
Chip Monolithic Ceramic Capacitors

muRata

Innovator in Electronics

Murata Manufacturing Co., Ltd.

CONTENTS

Par	t Numbering ————————————————————————————————————
Sel	ection Guide ————————————————————————————————————
1	for Flow/Reflow Soldering GRM15/18/21/31 Series
2	for Reflow Soldering GRM32/43/55 Series
3	Ultra-small GRM02/03 Series
4	Tight Tolerance GRM03/15 Series
5	Thin Type (Flow/Reflow)
	1 to 5 Specifications and Test Methods
6	Large Capacitance Type
	6 Specifications and Test Methods
7	High-Q GJM Series
8	Tight Tolerance High-Q GJM Series
	7 . 8 Specifications and Test Methods
GR	M Series Data
9	Microchips GMA Series ————————————————————————————————————
	9 Specifications and Test Methods
10	Capacitor Arrays GNM Series
	10 Specifications and Test Methods
11	for Ultrasonic Sensors GRM Series
	11 Specifications and Test Methods
12	Low ESL LLL/LLA/LLM Series
	12 Specifications and Test Methods
13	High Frequency GQM Series
	13 Specifications and Test Methods
14	High Frequency Type ERB Series
	14 Specifications and Test Methods
ERI	3 Series Data
Pac	ckage ————————————————————————————————————
<u></u>	Caution

Not	tice	— 93
Ref	erence Data	— 98
15	Medium Voltage Low Dissipation Factor	105
16	Medium Voltage High Capacitance for General-Use	110
17	Only for Information Devices/Tip & Ring	114
18	Only for Camera Flash Circuit	118
19	AC250V (r.m.s.) Type (Which Meet Japanese Law)	121
20	Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)	125
21	Safety Standard Recognized Type GD (IEC60384-14 Class Y3)	126
22	Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)	127
23	Safety Standard Recognized Type GB (IEC60384-14 Class X2)	128
GA:	3 Series Specifications and Test Methods	129
GRI	M/GR4/GR7/GA2/GA3 Series Data (Typical Example)	133
Pac	ckage	136
<u> </u>	Caution	139
Not	tice	— 145
ISO	9001 Certifications	148

• Please refer to "Specifications and Test Methods" at the end of each chapter of 15 - 19 .

Part Numbering

Chip Monolithic Ceramic Capacitors

GR M 18 8 B1 1H 102 K A01 K (Part Number)

●Product ID

2Series

G Scried			
Product ID	Code	Series	
	M	Tin Plated Layer	
GR	4	Only for Information Devices / Tip & Ring	
	7	Only for Camera Flash Circuit	
ER	В	High Frequency Type	
GQ	М	High Frequency for Flow/Reflow Soldering	
GM	A Monolithic Microchip		
GN	M	Capacitor Array	
	L	Low ESL Wide Width Type	
LL	Α	Eight-termination Low ESL Type	
	M	Ten-termination Low ESL Type	
GJ	М	High Frequency Low Loss Type Tin Plated Type	
64	2	for AC250V (r.m.s.)	
GA	3	Safety Standard Recognized Type	

3Dimension (LXW)

Code	Dimension (LXW)	EIA	
02	0.4×0.2mm	01005	
03	0.6×0.3mm	0201	
05	0.5×0.5mm	0202	
08	0.8×0.8mm	0303	
11	1.25×1.0mm	0504	
15	1.0×0.5mm	0402	
18	1.6×0.8mm	0603	
1D	1.4×1.4mm		
1X	Depends on individual standards.		
21	2.0×1.25mm 0805		
22	2.8×2.8mm 1111		
31	3.2×1.6mm 1206		
32	3.2×2.5mm	1210	
3X	Depends on individual	standards.	
42	4.5×2.0mm	1808	
43	4.5×3.2mm 1812		
52	5.7×2.8mm 2211		
55	5.7×5.0mm	2220	

4Dimension (T)

Code	Dimension (T)
2	0.2mm
2	2-elements (Array Type)
3	0.3mm
4	4-elements (Array Type)
5	0.5mm
6	0.6mm
7	0.7mm
8	0.8mm
9	0.85mm
Α	1.0mm
В	1.25mm
С	1.6mm
D	2.0mm
E	2.5mm
F	3.2mm
М	1.15mm
N	1.35mm
R	1.8mm
S	2.8mm
Q	1.5mm
Х	Depends on individual standards.

With the array type GNM series, "Dimension(T)" indicates the number of elements.

Ontinued from the preceding page.

5Temperature Characteristics

Temperature Characteristic Codes				Temperature C	Characteristics	Operation
Code	Public STD (Code	Referance Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C
2P	PH *1	JIS	20°C	20 to 85°C -150±60ppm/°C		-25 to 85°C
2R	RH *1	JIS	20°C	0°C 20 to 85°C -220±60ppm/°C		-25 to 85°C
2S	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C
3S	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C
3T	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C
5G	X8G *1	EIA	25°C	25°C 25 to 150°C 0±30ppm/°C		-55 to 150°C
6C	C0H *1	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C
6P	P2H *1	H *1 EIA 25°C 25 to 85°C -150±60ppm/°C		-55 to 125°C		
6R	R2H *1	H *1 EIA 25°C 25 to 85°C -220±60ppm/°C		-55 to 125°C		
6S	S2H *1	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C
6T T2H *1 E		EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C
7U U2J *1 EIA		25°C	25 to 85°C	-750±120ppm/°C	-55 to 125°C	
B1 B *2 JIS		JIS	20°C	-25 to 85°C	±10%	-25 to 85°C
В3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C
C7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C
F1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C
L8	X8L	EIA	25°C	-55 to 150°C	+15, -40%	-55 to 150°C
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C
R3	R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C
R7	X7R	EIA 25°C -55 to 125°C ±15%		±15%	-55 to 125°C	
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C
0.5	ZLM *3	2000	-25 to 20°C	-4700+100/-2500ppm/°C	25 +- 0500	
9E		20°C	20 to 85°C	-4700+500/-1000ppm/°C	-25 to 85°C	
14/0			±10%		±10% *4	FF 4- 40500
W0	-	-	25°C	-55 to 125°C	+22, -33% *5	-55 to 125°C

^{*1} Please refer to table for Capacitance Change under reference temperature.

^{*2} Capacitance change is specified with 50% rated voltage applied.

^{*3} Murata Temperature Characteristic Code.

^{*4} Apply DC350V bias.

^{*5} No DC bias.

Continued from the preceding page.

●Capacitance Change from each temperature

JIS Code

	Capacitance Change from 20°C (%)						
Murata Code	−55°C		−25°C		−10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
1X	-	-	-	-	-	-	
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18	
2P	-	-	1.32	0.41	0.88	0.27	
2R	-	-	1.70	0.72	1.13	0.48	
2\$	_	-	2.30	1.22	1.54	0.81	
2T	-	-	3.07	1.85	2.05	1.23	
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36	
3P	_	-	1.65	0.14	1.10	0.09	
3R	_	-	2.03	0.45	1.35	0.30	
3\$	_	-	2.63	0.95	1.76	0.63	
3T	-	-	3.40	1.58	2.27	1.05	
3U	-	-	4.94	2.84	3.29	1.89	
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75	

EIA Code

	Capacitance Change from 25°C (%)						
Murata Code	−55°C		-30°C		−10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
5C/5G	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0.87	-0.48	0.59	-0.33	0.38	-0.21	
6P	2.33	0.72	1.61	0.50	1.02	0.32	
6R	3.02	1.28	2.08	0.88	1.32	0.56	
6S	4.09	2.16	2.81	1.49	1.79	0.95	
6T	5.46	3.28	3.75	2.26	2.39	1.44	
7U	8.78	5.04	6.04	3.47	3.84	2.21	

6 Rated Voltage

Code	Rated Voltage		
0G	DC4V		
0J	DC6.3V		
1A	DC10V		
1C	DC16V		
1E	DC25V		
1H	DC50V		
2A	DC100V		
2D	DC200V		
2E	DC250V		
YD	DC300V		
2H	DC500V		
2J	DC630V		
3A	DC1kV		
3D	DC2kV		
3F	DC3.15kV		
ВВ	DC350V (for Camera Flash Circuit)		
E2	AC250V		
GB	X2; AC250V (Safety Standard Recognized Type GB)		
GC	X1/Y2; AC250V (Safety Standard Recognized Type GC)		
GD	Y3; AC250V (Safety Standard Recognized Type GD)		
GF	Y2, X1/Y2; AC250V (Safety Standard Recognized Type GF)		

Capacitance

Ex.

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter " ${\bf R}$ ". In this case, all figures are significant digits.

.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

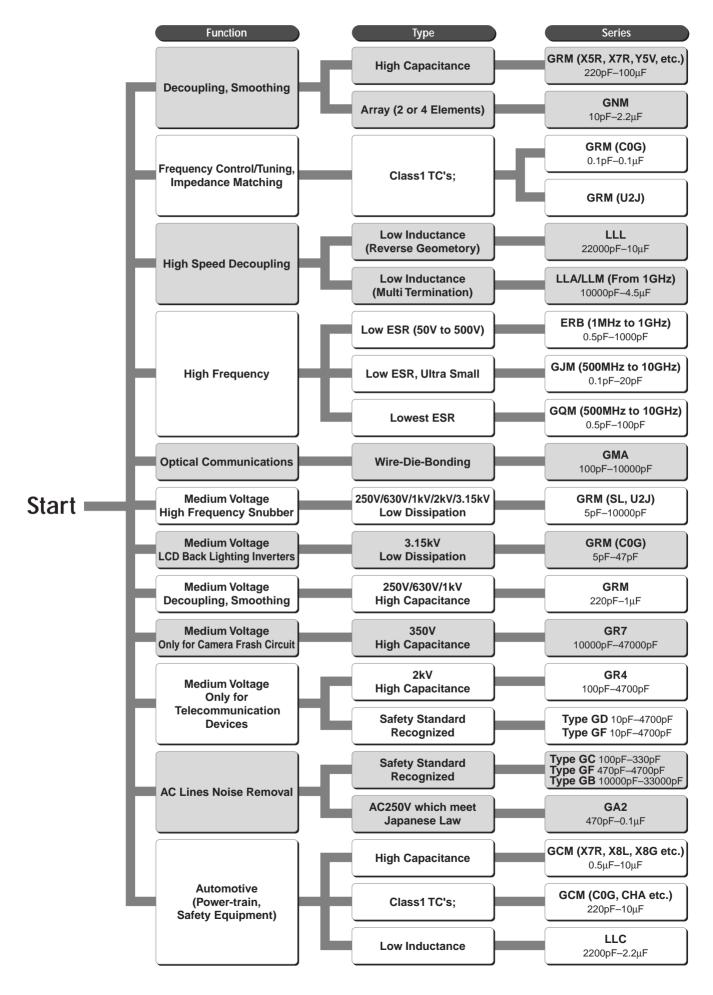
 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

8Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Capacitance Step	
В	±0.1pF	СΔ	GRM/GJM	≦5pF	E24 Series,1pF
С	10.25mF	CΔ-SL	GRM/ERB/GQM	≦5pF	* 1pF
C	±0.25pF	СΔ	GJM	<10pF	E24 Series,1pF
D	10 EnC	CΔ-SL	GRM	6.0 to 9.0pF	* 1pF
D	±0.5pF	СΔ	ERB/GQM/GJM	5.1 to 9.1pF	E24 Series
F	±1%	СΔ	GRM03/15, GJM03/15	5.0 to 9.9pF	0.1pF
		СΔ	GJM	≧10pF	E12 Series
G	±2%	СΔ	GQM	≧10pF	E24 Series
		СΔ	GRM03/15, GJM03/15	2.0 to 9.9pF	0.1pF
	±5%	CΔ-SL	GRM/GA3	≧10pF	E12 Series
J		СΔ	ERB/GQM/GJM	≧10pF	E24 Series
		СΔ	GRM03/15, GJM03/15	1.0 to 4.9pF	0.1pF
	±10%	B, R, X7R, X5R, ZLM	GRM/GR7/GA3	E6	Series
K		D, R, A/R, A3R, ZLIVI	GR4	E1:	2 Series
		СΔ	GRM03/15, GJM03/15	0.2 to 1.9pF	0.1pF
		Z5U	GRM	E3	Series
М	±20%	B, R, X7R, X7S	GRM/GMA/LLL/LLA/LLM	E6	Series
IVI	±2U /0	X7R	GA2	E3	Series
		СД	GRM03/15, GJM03/15	0.1 to 0.9pF	0.1pF
Z	+80%, -20%	F, Y5V	GRM	E3 Series	
R	Depends on individual standards.				

^{*} E24 series is also available.

Individual Specification Code


Expressed by three figures.

Packaging

Code	Packaging
L	ø178mm Embossed Taping
D	ø178mm Paper Taping
K	ø330mm Embossed Taping
J	ø330mm Paper Taping
E	ø178mm Special Packaging
F	ø330mm Special Packaging
В	Bulk
С	Bulk Case
Т	Bulk Tray

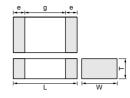
Selection Guide of Chip Monolithic Ceramic Capacitors

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

Chip Monolithic Ceramic Capacitors


for Flow/Reflow Soldering GRM15/18/21/31 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. The GRM series is a complete line of chip ceramic capacitors in 6.3V, 10V, 16V, 25V, 50V, 100V, 200V and 500V ratings. These capacitors have temperature characteristics ranging from COG to Y5V.
- 3. A wide selection of sizes is available, from the miniature LxWxT: 1.0x0.5x0.5mm to LxWxT: 3.2x1.6x1.6mm. GRM18, 21 and GRM31 types are suited to flow and

reflow soldering. GRM15 type is applied to only reflow soldering.

Part Number		Din	nensions (n	nm)	
Part Number	L	W	T	е	g min.
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5
GRM216			0.6 ±0.1		
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7
GRM21A	2.0 ±0.1	1.23 ±0.1	1.0 +0/-0.2	0.2 10 0.7	0.7
GRM21B			1.25 ±0.1		
GRM316			0.6 ±0.1		
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5
GRM31M			1.15 ±0.1	0.3 10 0.6	1.5
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		

^{*} Bulk Case: 1.6 ±0.07(L) × 0.8 ±0.07(W) × 0.8 ±0.07(T)

■ Applications

General electronic equipment

Temperature Compensating Type GRM15 Series (1.00x0.50mm) 50/25V

Part Number				GR	M15			
L x W [EIA]				1.00x0.	50 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	S (1)	X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Cap	oacitance part n	umbering code)	and T (mm) Dim	ension (T Dimer	sion part numbe	ring code)		
0.30pF(R30)	0.50(5)							
0.40pF(R40)	0.50(5)							
0.50pF(R50)	0.50(5)							
0.60pF(R60)	0.50(5)							
0.70pF(R70)	0.50(5)							
0.75pF(R75)	0.50(5)							
0.80pF(R80)	0.50(5)							
0.90pF(R90)	0.50(5)							
1.0pF(1R0)	0.50(5)							
1.1pF(1R1)	0.50(5)							
1.2pF(1R2)	0.50(5)							
1.3pF(1R3)	0.50(5)							
1.4pF(1R4)	0.50(5)							
1.5pF(1R5)	0.50(5)							
1.6pF(1R6)	0.50(5)							
1.7pF(1R7)	0.50(5)							
1.8pF(1R8)	0.50(5)							
1.9pF(1R9)	0.50(5)							
2.0pF(2R0)	0.50(5)							
2.1pF(2R1)	0.50(5)							
2.2pF(2R2)	0.50(5)							
2.3pF(2R3)	0.50(5)							
2.4pF(2R4)	0.50(5)							
2.5pF(2R5)	0.50(5)							
2.6pF(2R6)	0.50(5)							
2.2pF(2R2) 2.3pF(2R3) 2.4pF(2R4) 2.5pF(2R5)	0.50(5) 0.50(5) 0.50(5) 0.50(5)							

Continued from the preceding page.

Part Number					M15			
L x W [EIA]				I	50 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(*	SL 1X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Cap	-	numbering code)	and T (mm) Dim	nension (T Dimer	nsion part numb	ering code)		T
2.7pF(2R7)	0.50 (5)							
2.8pF(2R8)	0.50(5)							
2.9pF(2R9)	0.50(5)							
3.0pF(3R0)	0.50(5)	0.50(5)	0.50(5)	0.50(5)			0.50 (5)	0.50 (5)
3.1pF(3R1)	0.50(5)							
3.2pF(3R2)	0.50(5)						-	
3.3pF(3R3)	0.50(5)							
3.4pF(3R4)	0.50(5)			-				
3.5pF(3R5)	0.50(5)							
3.6pF(3R6)	0.50(5)							
3.7pF(3R7) 3.8pF(3R8)	0.50(5)							
3.9pF(3R9)	0.50(5)							
4.0pF(4R0)	0.50(5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
4.0pF(4R0)	0.50(5)	0.50(3)	0.00(3)	J.JU(J)			0.50(3)	0.50(3)
4.2pF(4R2)	0.50(5)							
4.3pF(4R3)	0.50(5)							
4.4pF(4R4)	0.50(5)							
4.5pF(4R5)	0.50(5)							
4.6pF(4R6)	0.50(5)							
4.7pF(4R7)	0.50(5)							
4.8pF(4R8)	0.50(5)							
4.9pF(4R9)	0.50(5)							
5.0pF(5R0)	0.50(5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
5.1pF(5R1)	0.50(5)							
5.2pF(5R2)	0.50 (5)							
5.3pF(5R3)	0.50 (5)							
5.4pF(5R4)	0.50 (5)							
5.5pF(5R5)	0.50 (5)							
5.6pF(5R6)	0.50 (5)							
5.7pF(5R7)	0.50 (5)							
5.8pF(5R8)	0.50 (5)							
5.9pF(5R9)	0.50 (5)							
6.0pF(6R0)	0.50 (5)	0.50 (5)	0.50(5)	0.50(5)			0.50 (5)	0.50(5)
6.1pF(6R1)	0.50(5)							
6.2pF(6R2)	0.50(5)						-	
6.3pF(6R3)	0.50(5)							
6.4pF(6R4)	0.50(5)							
6.5pF(6R5)	0.50(5)							
6.6pF(6R6)	0.50(5)						+	
6.7pF(6R7)	0.50(5)						+	
6.8pF(6R8)	0.50(5)							
6.9pF(6R9) 7.0pF(7R0)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
7.0pF(7R0) 7.1pF(7R1)	0.50(5)	0.50(3)	0.50(3)	0.50(3)			0.50(3)	0.50(3)
7.1pF(7R1) 7.2pF(7R2)	0.50(5)							
7.2pF(7R2) 7.3pF(7R3)	0.50(5)							
7.3pF(7R3)	0.50(5)						+	
7.4pr (7R4) 7.5pF(7R5)	0.50(5)						+	
7.6pF(7R6)	0.50(5)						+	
7.5pr (7R7)	0.50(5)						+	
7.8pF(7R8)	0.50(5)							
	- · · · · · · · · · · · · · · · · · · ·				1			

Continued from the preceding page.

Part Number				GR	M15	,		
L x W [EIA]				1.00x0.	50 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(1	X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part ı	numbering code)	and T (mm) Dim	nension (T Dimen	sion part numbe	ring code)		
7.9pF(7R9)	0.50 (5)							
8.0pF(8R0)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50 (5)
8.1pF(8R1)	0.50 (5)							
8.2pF(8R2)	0.50 (5)							
8.3pF(8R3)	0.50 (5)							
8.4pF(8R4)	0.50 (5)							
8.5pF(8R5)	0.50 (5)							
8.6pF(8R6)	0.50 (5)							
8.7pF(8R7)	0.50 (5)							
8.8pF(8R8)	0.50 (5)							
8.9pF(8R9)	0.50 (5)							
9.0pF(9R0)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50 (5)
9.1pF(9R1)	0.50 (5)							
9.2pF(9R2)	0.50 (5)							
9.3pF(9R3)	0.50 (5)							
9.4pF(9R4)	0.50 (5)							
9.5pF(9R5)	0.50 (5)							
9.6pF(9R6)	0.50 (5)							
9.7pF(9R7)	0.50 (5)							
9.8pF(9R8)	0.50 (5)							
9.9pF(9R9)	0.50 (5)							
10pF(100)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50 (5)
12pF(120)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50 (5)
15pF(150)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50 (5)
18pF(180)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50 (5)
22pF(220)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50 (5)
27pF(270)	0.50 (5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50 (5)
33pF(330)	0.50 (5)		0.50(5)	0.50(5)			0.50(5)	0.50 (5)
39pF(390)	0.50 (5)			0.50(5)			0.50(5)	0.50 (5)
47pF(470)	0.50 (5)				0.50(5)		0.50(5)	0.50 (5)
56pF(560)	0.50 (5)				0.50(5)		0.50(5)	0.50 (5)
68pF(680)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)
82pF(820)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)
100pF(101)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)
120pF(121)	0.50 (5)				0.50(5)			0.50(5)
150pF(151)	0.50 (5)				0.50(5)			0.50 (5)
180pF(181)	0.50 (5)				0.50(5)			0.50(5)
220pF(221)	0.50 (5)					0.50(5)		
270pF(271)	0.50 (5)					0.50(5)		
330pF(331)	0.50(5)					0.50(5)		
390pF(391)	0.50(5)					0.50(5)		
470pF(471)	0.50(5)							
560pF(561)	0.50 (5)							
680pF(681)	0.50(5)							
820pF(821)	0.50 (5)							
1000pF(102)	0.50 (5)							

The part numbering code is shown in ().

Temperature Compensating Type GRM18 Series (1.60x0.80mm) 200/100/50/25V

Part Number L x W [EIA]					1 /	GRM18 60x0.80 [06	031				
L X VV [EIA]		COG		Dali			03]	CI		TOLL	1121
ТС		(5C)		P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)	1	T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance p	oart numberi	ng code) an	d T (mm) Di	imension (T	Dimension p	art numberi	ng code)			
0.50pF(R50)	0.80(8)	0.80(8)	0.80(8)								
0.75pF(R75)	0.80(8)	0.80(8)	0.80(8)								
1.0pF(1R0)	0.80(8)	0.80(8)	0.80(8)								
2.0pF(2R0)	0.80(8)	0.80(8)	0.80(8)								
3.0pF(3R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
4.0pF(4R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
5.0pF(5R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
6.0pF(6R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
7.0pF(7R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
8.0pF(8R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
9.0pF(9R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
10pF(100)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
12pF(120)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
15pF(150)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
18pF(180)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
22pF(220)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
27pF(270)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
33pF(330)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
39pF(390)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
47pF(470)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
56pF(560)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)			0.80(8)	0.80(8)
68pF(680)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)	0.80(8)
82pF(820)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)	0.80(8)
100pF(101)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)	0.80(8)
120pF(121)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)	0.80(8)	0.80(8)
150pF(151)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)	0.80(8)	0.80(8)
180pF(181)		0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)	0.80(8)	0.80(8)
220pF(221)		0.80(8)	0.80(8)			0.80(8)		0.80(8)	0.80(8)	0.80(8)	0.80(8)
270pF(271)		0.80(8)	0.80(8)					0.80(8)	0.80(8)	0.80(8)	0.80(8)
330pF(331)		0.80(8)	0.80(8)					0.80(8)	0.80(8)	0.80(8)	0.80(8)
390pF(391)		0.80(8)	0.80(8)					0.80(8)	0.80(8)	0.80(8)	0.80(8)
470pF(471)		0.80(8)	0.80(8)						0.80(8)	0.80(8)	0.80(8)
560pF(561)		0.80(8)	0.80(8)						0.80(8)		0.80(8)
680pF(681)		0.80(8)	0.80(8)						0.80(8)		0.80(8)
820pF(821)		0.80(8)	0.80(8)								
1000pF(102)		0.80(8)	0.80(8)						0.80(8)		0.80(8)
1200pF(122)			0.80(8)						0.80(8)		0.80(8)
1500pF(152)			0.80(8)						0.80(8)		0.80(8)
1800pF(182)			0.80(8)						0.80(8)		0.80(8)
2200pF(222)			0.80(8)						0.80(8)		0.80(8)
2700pF(272)			0.80(8)						0.80(8)		0.80(8)
3300pF(332)									0.80(8)		0.80(8)
3900pF(392)									0.80(8)		0.80(8)
4700pF(472)									0.80(8)		0.80(8)
5600pF(562)									0.80(8)		0.80(8)
6800pF(682)									0.80(8)		0.80(8)
8200pF(822)									0.80(8)		0.80(8)
10000pF(103)									0.80(8)		0.80(8)

The part numbering code is shown in ().

Temperature Compensating Type GRM21 Series (2.00x1.25mm) 200/100/50/25V

Part Number						GRM21					
L x W [EIA]					2.	00x1.25 [08	805]			-	
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)		T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance p	art numberi	ing code) an	nd T (mm) Di	mension (T	Dimension p	oart numberi	ng code)	1	'	
12pF(120)	0.85(9)	0.85(9)									
15pF(150)	0.85(9)	0.85(9)									
18pF(180)	0.85(9)	0.85(9)									
22pF(220)	0.85(9)	0.85(9)									
27pF(270)	0.85(9)	0.85(9)									
33pF(330)	0.85(9)	0.85(9)									
39pF(390)	0.85(9)	0.85(9)									
47pF(470)	0.85(9)	0.85(9)									
56pF(560)	0.85(9)	0.85(9)									
68pF(680)	1.25(B)										
82pF(820)	1.25(B)										
100pF(101)	1.25(B)										
120pF(121)	1.25(B)						0.85(9)				
150pF(151)	1.25(B)						1.25(B)				
180pF(181)	1.25(B)			0.85(9)			1.25(B)				
220pF(221)	1.25(B)			0.85(9)	0.85(9)		1.25(B)				
270pF(271)				0.85(9)	0.85(9)	0.85(9)	1.25(B)				
330pF(331)				0.85(9)	0.85(9)	0.85(9)	1.25(B)				
390pF(391)				1.25(B)	0.85(9)	0.85(9)	1.25(B)				
470pF(471)				1.25(B)	0.85(9)	0.85(9)	1.25(B)	0.85(9)			
560pF(561)				1.25(B)	1.25(B)	1.25(B)		0.85(9)		1.25(B)	
680pF(681)		0.85(9)			1.25(B)	1.25(B)		0.85(9)		1.25(B)	
820pF(821)		0.85(9)				1.25(B)		1.25(B)	0.60(6)	1.25(B)	0.60(6)
1000pF(102)		0.85(9)						1.25(B)	0.60(6)	1.25(B)	0.60(6)
1200pF(122)		0.85(9)	0.60(6)					1.25(B)	0.60(6)	1.25(B)	0.60(6)
1500pF(152)		0.85(9)	0.60(6)					1.25(B)	0.85(9)	1.25(B)	0.85(9)
1800pF(182)			0.60(6)					1.25(B)	0.85(9)	1.25(B)	0.85(9)
2200pF(222)			0.60(6)					. ,	0.85(9)	. ,	0.85(9)
2700pF(272)			0.60(6)						1.25(B)		1.25(B)
3300pF(332)			0.60(6)						1.25(B)		1.25(B)
3900pF(392)			0.60(6)								
4700pF(472)			0.60(6)								
5600pF(562)			0.85(9)								
6800pF(682)			0.85(9)								
8200pF(822)			0.85(9)								
10000pF(103)			0.85(9)						0.60(6)		0.60(6)
12000pF(123)			0.85(9)						0.60(6)		0.60(6)
15000pF(153)			0.85(9)						0.60(6)		0.60(6)
18000pF(183)			1.25(B)						0.60(6)		0.60(6)
22000pF(223)			1.25(B)						0.85(9)		0.85(9)
27000pF(273)			. ,						0.85(9)		0.85(9)
33000pF(333)									1.00(A)		1.00(A)
39000pF(393)									1.25(B)		1.25(B)
47000pF(473)									1.25(B)		1.25(B)

The part numbering code is shown in ().

sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Temperature Compensating Type GRM31 Series (3.20x1.60mm) 500/200/100/50/25V Part Number GRM31 L x W [EIA] 3.20x1.60 [1206] C0G (**5C**) SL (**1X**) TC (6T) (7U) (6C) (6P) (6R) (6S)200 (**2D**) 500 100 100 Rated Volt. (2H)(2D)(1H)(1E) (1E) (1H)(1H)(1H)(1H)(1H)(1H)Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code) 1.0pF(1R0) 1.15(**M**) 2.0pF(2R0) 1.15(**M**) 3.0pF(3R0) 1.15(**M**) 4.0pF(4R0) 1.15(**M**) 5.0pF(5R0) 1.15(**M**) 6.0pF(6R0) 1.15(**M**) 7.0pF(**7R0**) 1.15(**M**) 8.0pF(8R0) 1.15(**M**) 9.0pF(9R0) 1.15(**M**) 10pF(100) 1.15(**M**) 12pF(**120**) 1.15(**M**) 15pF(**150**) 1.15(**M**) 18pF(**180**) 1.15(**M**) 22pF(**220**) 1.15(**M**) 27pF(270) 1.15(**M**) 33pF(330) 1.15(M) 39pF(390) 1.15(**M**) 47pF(**470**) 1.15(**M**) 56pF(560) 1.15(M) 68pF(680) 1.15(**M**) 82pF(820) 1.15(M) 270pF(**271**) 1.15(**M**) 330pF(331) 1.15(M) 390pF(391) 1.15(**M**) 0.85(9) 470pF(471) 1.15(M) 560pF(561) 1.15(M) 0.85(9) 680pF(681) 0.85(9) 1.15(**M**) 0.85(9) 820pF(821) 0.85(9) 0.85(9) 0.85(9) 1.15(**M**) 0.85(9) 1000pF(102) 0.85(9) 1.15(**M**) 1.15(**M**) 0.85(9) 1.15(**M**) 0.85(9) 1200pF(122) 0.85(9) 1.15(M) 1.15(M) 1.15(M) 1.15(M) 0.85(9) 1500pF(152) 0.85(9) 1.15(**M**) 1.15(M) 1.15(M) 0.85(9) 1800pF(182) 0.85(9) 1.15(M) 0.85(9) 2200pF(222) 0.85(**9**) 1.15(**M**) 1.15(M) 2700pF(272) 0.85(9) 1.15(**M**) 1.15(**M**) 0.85(9) 0.85(9) 1.15(M) 1.15(M) 3300pF(332) 3900pF(392) 0.85(9) 0.85(9) 1.15(M) 0.85(9) 1.15(**M**) 0.85(9) 4700pF(472) 0.85(9) 0.85(9) 0.85(9) 1.15(M) 0.85(9) 5600pF(**562**) 0.85(9) 0.85(9) 0.85(9) 0.85(9) 6800pF(682) 0.85(9) 0.85(9) 0.85(9) 1.15(M) 1.15(M) 8200pF(822) 1.15(**M**) 1.15(**M**) 1.15(**M**) 0.85(9) 1.15(M) 10000pF(103) 0.85(9) 0.85(9) 12000pF(123) 0.85(9) 15000pF(153) 0.85(9) 18000pF(183) 0.85(**9**) 22000pF(223) 0.85(9) 27000pF(273) 0.85(9) 33000pF(333) 0.85(9) 39000pF(393) 1.15(M) 47000pF(473) 1.15(M)

muRata

Continued from the preceding page.

Part Number							GR	M31						
L x W [EIA]							3.20x1.6	0 [1206]						
тс			C0G (5C)			C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)		T2H (6T)	U2J (7U)
Rated Volt.	500 (2H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	e part nur	mbering o	code) and	T (mm) D	imension	(T Dimen	sion part	numberir	g code)	'	'		
56000pF(563)				1.60(C)								0.85(9)		0.85(9)
68000pF(683)				1.60(C)								1.15(M)		1.15(M)
82000pF(823)				1.60(C)								1.15(M)		1.15(M)
0.10μF(104)					1.60(C)							1.15(M)		1.15(M)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X5R (R6) Characteristics

тс					X! (F	5R (6)				
Part Number	GRI	M15		GRM18		GR	M21		GRM31	
L x W [EIA]	1.00x0.5	50 [0402]	1.	60x0.80 [060)3]	2.00x1.2	25 [0805]	3.	20x1.60 [120	06]
Rated Volt.	16 (1C)	10 (1A)	25 (1E)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	pacitance pa	rt numbering	code) and T	(mm) Dimens	sion (T Dimen	sion part nun	nbering code)			
68000pF(683)		0.50(5)								
0.10μF(104)	0.50(5)	0.50(5)								
0.22μF(224)			0.80(8)							
0.33μF(334)				0.80(8)		0.60(6)				
0.47μF(474)				0.80(8)						
0.68μF(684)				0.80(8)						
1.0μF(105)				0.80(8)	0.80(8)	0.85(9)			0.85(9)	
1.5μF(155)							0.85(9)			
2.2μF(225)						1.25(B)	1.25(B)		0.85(9)	
3.3μF(335)							1.25(B)		1.30(X)	
4.7μF(475)							1.25(B)	1.60(C)	1.60(C)	1.15(M)
10μF(106)									1.60(C)	1.60(C)

The part numbering code is shown in each ().

High Dielectric Constant Type X7R (R7) Characteristics

тс											7R 1 7)									
Part Number		GR	M15			(GRM18	3				GR	M21				(GRM3	1	
L x W [EIA]	1.	00x0.5	50 [040)2]						2.	00x1.2	25 [080)5]			3.20	(1.60 [1206]		
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacita	nce pa	rt num	bering	code)	and T	(mm) [Dimens	ion (T	Dimen	sion pa	art nun	nbering	code)			•	•		•
220pF (221)	0.50 (5)				0.80 (8)	0.80 (8)														
330pF (331)	0.50 (5)				0.80 (8)	0.80 (8)														
470pF (471)	0.50 (5)				0.80 (8)	0.80 (8)														
680pF (681)	0.50 (5)				0.80 (8)	0.80 (8)														

 $^{3.3\}mu F$ and $4.7\mu F$, 6.3V rated are GRM21 series of L: 2 ± 0.15 , W: 1.25 ± 0.15 , T: 1.25 ± 0.15 .

T: 1.15±0.1mm is also available for GRM31 1.0 μF for 16V.

L: 3.2±0.2, W: 1.6±0.2 for GRM31 16V 1.0µF type. Also L: 3.2±0.2, W: 1.6±0.2, T: 1.15±0.15 for GRM31 16V 1.5µF and 2.2µF type.

Dimensions are shown in mm and Rated Voltage in Vdc.

TC										(R	7R 2 7)									
Part Number			M15				GRM18						M21					GRM3		
L x W [EIA]		00x0.5	040		100	1.60x 50	0.80 [25		10	100	2. 50		25 [080	10	4.2	100	3.20x 50	(1.60 [25	1206 <u>]</u> 16	10
Rated Volt.	50 (1H)	(1E)	16 (1C)	10 (1A)	100 (2A)	(1H)	(1E)	16 (1C)	10 (1A)	(2A)	(1H)	25 (1E)	16 (1C)	(1A)	6.3 (0J)	100 (2A)	(1H)	(1E)	(1 C)	10 (1A)
Capacitance (Ca	T	nce pa	rt num	bering	1	l .	(mm) [Dimens	sion (T	Dimen	sion pa	art nun	nbering	g code)						
1000pF (102)	0.50 (5)				0.80 (8)	0.80 (8)														
1500pF (152)	0.50 (5)				0.80 (8)	0.80 (8)														
2200pF (222)	0.50 (5)				0.80 (8)	0.80 (8)														
3300pF (332)	0.50 (5)				0.80 (8)	0.80 (8)														
4700pF (472)	0.50 (5)					0.80 (8)				0.85 (9)										
6800pF (682)		0.50 (5)				0.80 (8)				0.85 (9)										
10000pF (103)		0.50 (5)				0.80 (8)				1.25 (B)										
15000pF (153)		0.50 (5)	0.50 (5)			0.80 (8)				1.25 (B)										
22000pF (223)		0.50 (5)	0.50 (5)			0.80 (8)				1.25 (B)										
33000pF (333)		0.50 (5)	0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)			1.25 (B)	0.85 (9)					1.15 (M)				
47000pF (473)		0.50 (5)		0.50 (5)		0.80 (8)	0.80 (8)			1.25 (B)	1.25 (B)					1.15 (M)				
68000pF (683)			0.50 (5)			0.80 (8)	0.80 (8)				1.25 (B)					1.15 (M)				
0.10μF (104)			0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)	0.80 (8)			1.25 (B)	1.25 (B)								
0.15μF (154)							0.80 (8)	0.80 (8)	0.80 (8)		1.25 (B)	1.25 (B)								
0.22μF (224)							0.80 (8)	0.80 (8)	0.80 (8)		1.25 (B)	0.85 (9)								
0.33μF (334)								0.80 (8)			0.85 (9)	1.25 (B)		0.60 (6)			0.85 (9)			
0.47μF (474)								0.80 (8)			1.25 (B)	0.85 (9)	0.85 (9)				1.15 (M)		0.85 (9)	
0.68μF (684)													0.85 (9)					0.85 (9)		
1.0μF (105)												1.25 (B)	1.25 (B)				1.15 (M)	1.15 (M)	0.85 (9)	0.85 (9)
1.5μF (155)												1.25 (B)					1.60 (C)		1.15 (M)	
2.2μF (225)														1.25 (B)	1.25 (B)		1.60 (C)	1.15 (M)	1.15 (M)	1.15 (M)
3.3μF (335)																		1.60 (C)	1.60 (C)	
4.7μF (475)																		1.60 (C)	1.60 (C)	1.60 (C)
10μF (106)																				1.60 (C)

The part numbering code is shown in each ().

The tolerance will be changed to L: 3.2 ± 0.2 , W: 1.6 ± 0.2 for GRM31 16V $1.0\mu F$ type. Also L: 3.2 ± 0.2 , W: 1.6 ± 0.2 , T: 1.15 ± 0.15 for GRM31 16V $1.5\mu F$ and $2.2\mu F$ type. Dimensions are shown in mm and Rated Voltage in Vdc.

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

High Dielectric Constant Type Y5V (F5) Characteristics

тс									Y.	5V 5 5)								
Part Number		GR	M15				GRM18	3			GR	M21				GRM31		
L x W [EIA]	1	.00x0.5	040	2]		1.60	x0.80 [(0603]		2	.00x1.2	25 [080	5]		3.20	x1.60 [1	1206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	pacitar	nce par	t numbe	ering co	de) and	mm) T b) Dime	nsion (T	Dimen	sion pa	rt numb	pering c	ode)					
2200pF (222)	0.50 (5)																	
4700pF (472)	0.50 (5)				0.80 (8)													
10000pF (103)	0.50 (5)					0.80 (8)												
22000pF (223)		0.50 (5)				0.80 (8)												
47000pF (473)		0.50 (5)	0.50 (5)			0.80 (8)												
0.10μF (104)		0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.85 (9)								
0.22μF (224)			0.50 (5)			0.80 (8)		0.80 (8)		1.25 (B)	0.85 (9)							
0.47μF (474)			0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)	0.80 (8)	0.85 (9)	1.25 (B)			1.15 (M)				
1.0μF (105)								0.80 (8)	0.80 (8)	0.85 (9)	0.85 (9)	0.85 (9)	0.85 (9)		1.15 (M)	0.85 (9)		
2.2µF (225)											1.25 (B)	1.25 (B)	1.25 (B)			1.15 (M)	0.85 (9)	
4.7μF (475)													1.25 (B)	1.60 (C)	1.15 (M)	1.15 (M)	1.15 (M)	
10μF (106)															1.60 (C)		1.15 (M)	1.15 (M)

The part numbering code is shown in each ().

T: 1.25 ± 0.1 mm is also available for GRM21 25V or 16V $1.0\mu F$ type.

Chip Monolithic Ceramic Capacitors

for Reflow Soldering GRM32/43/55 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. The GRM series is a complete line of chip ceramic capacitors in 10V, 16V, 25V, 50V, 100V and 200V ratings. These capacitors have temperature characteristics ranging from C0G to Y5V.
- 3. This series consists of type LxWxT: 3.2x2.5x0.85mm to LxWxT: 5.7x5.0x2.5mm. These are suited to only reflow soldering.

Part Number		Dime	nsions (mm	1)		
Part Number	L	W	T	e min.	g min.	
GRM329			0.85 ±0.1			-
GRM32M			1.15 ±0.1			-
GRM32N	3.2 ± 0.3	2.5 ±0.2	1.35 ±0.15	0.3	1.0	2 2 2
GRM32R			1.8 ±0.2			2020
GRM32E			2.5 ±0.2			
GRM43M			1.15 ±0.1			
GRM43N			1.35 ±0.15			
GRM43R	4.5 ± 0.4	3.2 ±0.3	1.8 ±0.2	0.3	2.0	
GRM43D			2.0 ±0.2			e g e
GRM43E			2.5 ±0.2			
GRM55M			1.15 ±0.1			
GRM55N			1.35 ±0.15			
GRM55C	5.7 ±0.4	5.0 +0.4	1.6 ±0.2	0.3	2.0	
GRM55R	3.7 ±0.4	3.0 ±0.4	1.8 ±0.2	0.3	2.0	
GRM55D			2.0 ±0.2			L W
GRM55E			2.5 ±0.2			L W

■ Applications

General electronic equipment

Temperature Compensating Type GRM32/43/55 Series

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32N5C2D561JV01	COG (EIA)	200	560 ±5%	3.20	2.50	1.35
GRM32N5C2D681JY21	COG (EIA)	200	680 ±5%	3.20	2.50	1.35
GRM32N5C2D821JY21	COG (EIA)	200	820 ±5%	3.20	2.50	1.35
GRM32N5C2D102JY21	COG (EIA)	200	1000 ±5%	3.20	2.50	1.35
GRM43R5C2D122JV01	COG (EIA)	200	1200 ±5%	4.50	3.20	1.80
GRM43R5C2D152JV01	COG (EIA)	200	1500 ±5%	4.50	3.20	1.80
GRM43R5C2D182JY21	COG (EIA)	200	1800 ±5%	4.50	3.20	1.80
GRM43R5C2D222JY21	COG (EIA)	200	2200 ±5%	4.50	3.20	1.80
GRM43R5C2D272JY21	COG (EIA)	200	2700 ±5%	4.50	3.20	1.80
GRM55N5C2D332JY21	COG (EIA)	200	3300 ±5%	5.70	5.00	1.35
GRM55R5C2D392JY21	COG (EIA)	200	3900 ±5%	5.70	5.00	1.80
GRM55R5C2D472JY21	COG (EIA)	200	4700 ±5%	5.70	5.00	1.80
GRM55R5C2D562JY21	COG (EIA)	200	5600 ±5%	5.70	5.00	1.80
GRM32N1X2D152JV01	SL (JIS)	200	1500 ±5%	3.20	2.50	1.35
GRM43N1X2D182JV01	SL (JIS)	200	1800 ±5%	4.50	3.20	1.35
GRM43N1X2D222JV01	SL (JIS)	200	2200 ±5%	4.50	3.20	1.35
GRM43R1X2D272JV01	SL (JIS)	200	2700 ±5%	4.50	3.20	1.80
GRM43R1X2D332JV01	SL (JIS)	200	3300 ±5%	4.50	3.20	1.80
GRM43R1X2D392JV01	SL (JIS)	200	3900 ±5%	4.50	3.20	1.80
GRM55N1X2D472JV01	SL (JIS)	200	4700 ±5%	5.70	5.00	1.35
GRM55R1X2D562JV01	SL (JIS)	200	5600 ±5%	5.70	5.00	1.80
GRM55R1X2D682JV01	SL (JIS)	200	6800 ±5%	5.70	5.00	1.80
GRM55R1X2D822JV01	SL (JIS)	200	8200 ±5%	5.70	5.00	1.80
GRM32N1X2A562JZ01	SL (JIS)	100	5600 ±5%	3.20	2.50	1.35
GRM32N1X2A682JZ01	SL (JIS)	100	6800 ±5%	3.20	2.50	1.35
GRM43N1X2A822JZ01	SL (JIS)	100	8200 ±5%	4.50	3.20	1.35
GRM43R1X2A103JZ01	SL (JIS)	100	10000 ±5%	4.50	3.20	1.80
GRM43R1X2A123JZ01	SL (JIS)	100	12000 ±5%	4.50	3.20	1.80
GRM43R1X2A153JZ01	SL (JIS)	100	15000 ±5%	4.50	3.20	1.80
GRM55M1X2A183JZ01	SL (JIS)	100	18000 ±5%	5.70	5.00	1.15
GRM55N1X2A223JZ01	SL (JIS)	100	22000 ±5%	5.70	5.00	1.35
GRM55R1X2A273JZ01	SL (JIS)	100	27000 ±5%	5.70	5.00	1.80
GRM55R1X2A333JZ01	SL (JIS)	100	33000 ±5%	5.70	5.00	1.80
GRM55R1X2A393JZ01	SL (JIS)	100	39000 ±5%	5.70	5.00	1.80

Continued from the preceding page.

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32N1X1H103JZ01	SL (JIS)	50	10000 ±5%	3.20	2.50	1.35
GRM32N1X1H123JZ01	SL (JIS)	50	12000 ±5%	3.20	2.50	1.35
GRM43R1X1H153JZ01	SL (JIS)	50	15000 ±5%	4.50	3.20	1.80
GRM55M1X1H183JZ01	SL (JIS)	50	18000 ±5%	5.70	5.00	1.15
GRM55N1X1H223JZ01	SL (JIS)	50	22000 ±5%	5.70	5.00	1.35
GRM55R1X1H273JZ01	SL (JIS)	50	27000 ±5%	5.70	5.00	1.80
GRM55R1X1H333JZ01	SL (JIS)	50	33000 ±5%	5.70	5.00	1.80
GRM55R1X1H393JZ01	SL (JIS)	50	39000 ±5%	5.70	5.00	1.80

High Dielectric Constant Type Type GRM32 Series (3.20x2.50mm)

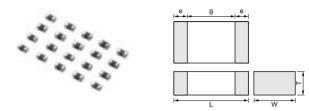
Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32ER61A106KA01	X5R (EIA)	10	10μF ±10%	3.20	2.50	2.50
GRM32NR72A683KA01	X7R (EIA)	100	68000pF ±10%	3.20	2.50	1.35
GRM32NR72A104KA01	X7R (EIA)	100	0.10μF ±10%	3.20	2.50	1.35
GRM32CR72A684KA01	X7R (EIA)	100	0.68μF ±10%	3.20	2.50	1.60
GRM32CR72A105KA35	X7R (EIA)	100	1.0μF ±10%	3.20	2.50	1.60
GRM32ER72A105KA01	X7R (EIA)	100	1.0μF ±10%	3.20	2.50	2.50
GRM32DR72A155KA35	X7R (EIA)	100	1.5μF ±10%	3.20	2.50	2.00
GRM32ER72A225KA35	X7R (EIA)	100	2.2μF ±10%	3.20	2.50	2.50
GRM32NR71H684KA01	X7R (EIA)	50	0.68μF ±10%	3.20	2.50	1.35
GRM32DR71H335KA88	X7R (EIA)	50	3.3μF ±10%	3.20	2.50	2.00
GRM32ER71H475KA88	X7R (EIA)	50	4.7μF ±10%	3.20	2.50	2.50
GRM32NR71E155KA01	X7R (EIA)	25	1.5μF ±10%	3.20	2.50	1.35
GRM32RR71E225KA01	X7R (EIA)	25	2.2μF ±10%	3.20	2.50	1.80
GRM32DR71E335KA01	X7R (EIA)	25	3.3μF ±10%	3.20	2.50	2.00
GRM32DR71E475KA61	X7R (EIA)	25	4.7μF ±10%	3.20	2.50	2.00
GRM32MR71C225KA01	X7R (EIA)	16	2.2μF ±10%	3.20	2.50	1.15
GRM32NR71C335KA01	X7R (EIA)	16	3.3μF ±10%	3.20	2.50	1.35
GRM32RR71C475KA01	X7R (EIA)	16	4.7μF ±10%	3.20	2.50	1.80
GRM32DR71C106KA01	X7R (EIA)	16	10μF ±10%	3.20	2.50	2.00
GRM32NF52A104ZA01	Y5V (EIA)	100	0.10μF +80/-20%	3.20	2.50	1.35
GRM32RF51H105ZA01	Y5V (EIA)	50	1.0μF +80/-20%	3.20	2.50	1.80
GRM32DF51H106ZA01	Y5V (EIA)	50	10μF +80/-20%	3.20	2.50	2.00
GRM329F51E475ZA01	Y5V (EIA)	25	4.7μF +80/-20%	3.20	2.50	0.85
GRM32NF51E106ZA01	Y5V (EIA)	25	10μF +80/-20%	3.20	2.50	1.35
GRM32NF51C106ZA01	Y5V (EIA)	16	10μF +80/-20%	3.20	2.50	1.35

High Dielectric Constant Type Type GRM43 Series (4.50x3.20mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM43RR72A154KA01	X7R (EIA)	100	0.15 ±10%	4.50	3.20	1.80
GRM43RR72A224KA01	X7R (EIA)	100	0.22 ±10%	4.50	3.20	1.80
GRM43DR72A474KA01	X7R (EIA)	100	0.47 ±10%	4.50	3.20	2.00
GRM43DR72A155KA01	X7R (EIA)	100	1.5 ±10%	4.50	3.20	2.00
GRM43ER72A225KA01	X7R (EIA)	100	2.2 ±10%	4.50	3.20	2.50
GRM43DR71H155KA01	X7R (EIA)	50	1.5 ±10%	4.50	3.20	2.00
GRM43ER71H225KA01	X7R (EIA)	50	2.2 ±10%	4.50	3.20	2.50
GRM43ER71E475KA01	X7R (EIA)	25	4.7 ±10%	4.50	3.20	2.50
GRM43RF52A224ZD01	Y5V (EIA)	100	0.22 +80/-20%	4.50	3.20	1.80

High Dielectric Constant Type Type GRM55 Series (5.70x5.00mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM55DR61H106KA88	X5R (EIA)	50	10 ±10%	5.70	5.00	2.00
GRM55DR72A105KA01	X7R (EIA)	100	1.0 ±10%	5.70	5.00	2.00
GRM55ER72A475KA01	X7R (EIA)	100	4.7 ±10%	5.70	5.00	2.50
GRM55RR71H105KA01	X7R (EIA)	50	1.0 ±10%	5.70	5.00	1.80
GRM55RR71H155KA01	X7R (EIA)	50	1.5 ±10%	5.70	5.00	1.80
GRM55ER11H475KA01	X7R (EIA)	50	4.7 ±10%	5.70	5.00	2.50
GRM55ER71H475KA01	X7R (EIA)	50	4.7 ±10%	5.70	5.00	2.50
GRM55RF52A474ZA01	Y5V (EIA)	100	0.47 +80/-20%	5.70	5.00	1.80


Chip Monolithic Ceramic Capacitors

Ultra-small GRM02/03 Series

■ Features

- 1. Small chip size (LxWxT: 0.4x0.2x0.2, 0.6x0.3x0.3
- 2. Terminations are made of metal highly resistant to migration.
- 3. GRM02, GRM03 series is suited to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 5. GRM02, GRM03 series are suited to miniature micro wave module, portable equipment and high frequency circuits.

Part Number		Din	nensions (n	nm)	
Part Number	L	W	T	е	g min.
GRM022	0.4 ±0.02	0.2 ±0.02	0.2 ±0.02	0.07 to 0.14	0.13
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2

■ Applications

- 1. Miniature micro wave module
- 2. Portable equipment
- 3. High frequency circuit

Part Number	GRM02						GR	M03					
LxW	0.4x0.2 [01005]						0.6x0.3	3 [0201]					
тс	C0G (5C)	C0G (5C)	R2H (6R)	S2H (6S)	T2H (6T)	U. (7	2J U)	X5R (R6)		X (F	7R R7)		Y5V (F5)
Rated Volt.	16 (1C)	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	10 (1A)
Capacitance (Ca	apacitance	part num	bering cod	de) and T (mm) Dime	nsion (T D	imension	part numb	ering code	e)			
0.30pF(R30)		0.3(3)											
0.40pF(R40)		0.3(3)											
0.50pF(R50)		0.3(3)											
0.60pF(R60)		0.3(3)											
0.70pF(R70)		0.3 (3)											
0.75pF(R75)		0.3(3)											
0.80pF(R80)		0.3(3)											
0.90pF(R90)		0.3(3)											
1.0pF(1R0)	0.2(2)	0.3(3)											
1.1pF(1R1)		0.3(3)											
1.2pF(1R2)		0.3(3)											
1.3pF(1R3)		0.3 (3)											
1.4pF(1R4)		0.3(3)											
1.5pF(1R5)		0.3(3)											
1.6pF(1R6)		0.3(3)											
1.7pF(1R7)		0.3(3)											
1.8pF(1R8)		0.3(3)											
1.9pF(1R9)		0.3(3)											
2.0pF(2R0)	0.2(2)	0.3(3)											
2.1pF(2R1)		0.3(3)											
2.2pF(2R2)		0.3(3)											
2.3pF(2R3)		0.3(3)											
2.4pF(2R4)		0.3(3)											
2.5pF(2R5)		0.3(3)											
2.6pF(2R6)		0.3(3)											
2.7pF(2R7)		0.3(3)											

Part Number	GRM02			-	-			M03				-	
LxW	0.4x0.2 [01005]			T	1	1	0.6x0.3	3 [0201]				_	
тс	C0G (5C)	C0G (5C)	R2H (6R)	S2H (6S)	T2H (6T)	(7	2J 'U)	X5R (R6)		X (F	7R R7)		Y5V (F5)
Rated Volt.	16 (1C)	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	10 (1A)
Capacitance (Ca	apacitance	part num	bering cod	de) and T ((mm) Dime	ension (T D	imension	part numb	ering cod	e)			
2.8pF(2R8)		0.3(3)											
2.9pF(2R9)		0.3(3)											
3.0pF(3R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
3.1pF(3R1)		0.3(3)											
3.2pF(3R2)		0.3(3)											
3.3pF(3R3)		0.3(3)											
3.4pF(3R4)		0.3(3)											
3.5pF(3R5)		0.3(3)											
3.6pF(3R6)		0.3(3)											
3.7pF(3R7)		0.3(3)											
3.8pF(3R8)		0.3(3)											
3.9pF(3R9)	0.0(2)	0.3(3)	0.0(0)	0.0(0)	0.0(2)	0.0(0)							
4.0pF(4R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
4.1pF(4R1)		0.3(3)											
4.2pF(4R2)		0.3(3)											
4.3pF(4R3)		0.3(3)											
4.4pF(4R4)		0.3(3)											
4.5pF(4R5)		0.3(3)											
4.6pF(4R6) 4.7pF(4R7)		0.3(3) 0.3(3)											
4.7pF(4R7) 4.8pF(4R8)		0.3(3)											
4.8pF(4R8) 4.9pF(4R9)		0.3(3)											
5.0pF(5R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
5.0pF(5R0) 5.1pF(5R1)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
5.1pF(5R1) 5.2pF(5R2)		0.3(3)											
5.2pr (5R2)		0.3(3)											
5.4pF(5R4)		0.3(3)											
5.5pF(5R5)		0.3(3)											
5.6pF(5R6)		0.3(3)											
5.7pF(5R7)		0.3(3)											
5.8pF(5R8)		0.3(3)											
5.9pF(5R9)		0.3(3)											
6.0pF(6R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
6.1pF(6R1)	0.2(2)	0.3(3)	0.0(0)	0.0(0)	0.0(0)	0.0(0)							
6.2pF(6R2)		0.3(3)											
6.3pF(6R3)		0.3(3)											
6.4pF(6R4)		0.3(3)											
6.5pF(6R5)		0.3(3)											
6.6pF(6R6)		0.3(3)											
6.7pF(6R7)		0.3(3)											
6.8pF(6R8)		0.3(3)											
6.9pF(6R9)		0.3(3)											
7.0pF(7R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
7.1pF(7R1)	, ,	0.3(3)	. ,	1	.,	1							
7.2pF(7R2)		0.3(3)											
7.3pF(7R3)		0.3(3)											
7.4pF(7R4)		0.3(3)											
7.5pF(7R5)		0.3(3)											
7.6pF(7R6)		0.3(3)											
7.7pF(7R7)		0.3(3)											
7.8pF(7R8)		0.3(3)											
7.9pF(7R9)		0.3(3)											

20

muRata

TC Rated Volt. Capacitance (Cap 8.0pF(8R0) 8.1pF(8R1) 8.2pF(8R2) 8.3pF(8R3) 8.4pF(8R4) 8.5pF(8R5) 8.6pF(8R6) 8.7pF(8R7) 8.8pF(8R8)	0.4×0.2 [01005] C0G (5C) 16 (1C) pacitance 0.2(2)	0.3(3) 0.3(3)		S2H (6S) 25 (1E)	T2H (6T)	U (7	0.6x0.3 2J U)	X5R (R6)		X.	7R ?7)		Y5V (F5)
Rated Volt. Capacitance (Cap 8.0pF(8R0) 8.1pF(8R1) 8.2pF(8R2) 8.3pF(8R3) 8.4pF(8R4) 8.5pF(8R5) 8.6pF(8R6) 8.7pF(8R7)	(5C) 16 (1C) pacitance	(5C) 25 (1E) part numl 0.3(3) 0.3(3)	(6R) 25 (1E) bering coo	(6S)	(6T)	(7	2J 'U)			X.	7R		Y5V
Capacitance (Cap 8.0pF(8R0) 8.1pF(8R1) 8.2pF(8R2) 8.3pF(8R3) 8.4pF(8R4) 8.5pF(8R5) 8.6pF(8R6) 8.7pF(8R7)	(1C) pacitance	(1E) part num 0.3(3) 0.3(3)	(1E) bering coo	25 (1E)	25			· -/		(1)	(1)		(F3)
8.0pF(8R0) 8.1pF(8R1) 8.2pF(8R2) 8.3pF(8R3) 8.4pF(8R4) 8.5pF(8R5) 8.6pF(8R6) 8.7pF(8R7)		0.3(3) 0.3(3)			(1E)	50 (1H)	25 (1E)	10 (1A)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	10 (1A)
8.1pF(8R1) 8.2pF(8R2) 8.3pF(8R3) 8.4pF(8R4) 8.5pF(8R5) 8.6pF(8R6) 8.7pF(8R7)	0.2(2)	0.3(3)		de) and T (mm) Dime	nsion (T D	imension	part numb	ering code	e)	'		
8.2pF(8R2) 8.3pF(8R3) 8.4pF(8R4) 8.5pF(8R5) 8.6pF(8R6) 8.7pF(8R7)			0.3(3)	0.3(3)	0.3(3)	0.3(3)							
8.3pF(8R3) 8.4pF(8R4) 8.5pF(8R5) 8.6pF(8R6) 8.7pF(8R7)													
8.4pF(8R4) 8.5pF(8R5) 8.6pF(8R6) 8.7pF(8R7)		0.3(3)											
8.5pF(8R5) 8.6pF(8R6) 8.7pF(8R7)		0.3(3)											
8.6pF(8R6) 8.7pF(8R7)		0.3(3)											
8.7pF(8R7)		0.3(3)											
-		0.3(3)											
8.8pF(8R8)		0.3(3)											
		0.3(3)											
8.9pF(8R9)		0.3(3)											
9.0pF(9R0)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
9.1pF(9R1)		0.3(3)											
9.2pF(9R2)		0.3(3)											
9.3pF(9R3)		0.3(3)											
9.4pF(9R4)		0.3(3)											
9.5pF(9R5)		0.3(3)											
9.6pF(9R6)		0.3(3)											
9.7pF(9R7)		0.3(3)											
9.8pF(9R8)		0.3(3)											
9.9pF(9R9)		0.3(3)											
10pF(100)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
12pF(120)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
15pF(150)	0.2(2)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
18pF(180)	(-)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	315(3)	0.3(3)						
22pF(220)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
27pF(270)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
33pF(330)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
39pF(390)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
47pF(470)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
56pF(560)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
68pF(680)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
82pF(820)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
100pF(101)		0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)		0.3(3)	0.3(3)			
150pF(151)		0.5(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)		0.3(3)	0.3(3)			
220pF(221)									0.3(3)	0.3(3)			
330pF(331)									0.3(3)	0.3(3)			
-													
470pF(471)									0.3(3)	0.3(3)	-		
680pF(681)									0.3(3)	0.3(3)	-		
1000pF(102)								0.2(2)	0.3(3)	0.3(3)		0.2(2)	
1500pF(152)								0.3(3)	0.3(3)	0.3/2/	0.3(2)	0.3(3)	0.2/
2200pF(222)								0.3(3)		0.3(3)	0.3(3)	0.3(3)	0.3(3
3300pF(332)								0.3(3)		0.3(3)	0.3(3)	0.3(3)	0.00
4700pF(472)								0.3(3)			0.3(3)	0.3(3)	0.3(3
6800pF(682) 10000pF(103)								0.3(3) 0.3(3)			0.3(3) 0.3(3)	0.3(3) 0.3(3)	0.3(3

The part numbering code is shown in $\ (\).$

Chip Monolithic Ceramic Capacitors

Tight Tolerance GRM03/15 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. A wide selection of sizes is available, from the miniature LxWxT: 0.6x0.3x0.3mm or LxWxT: 1.0x0.5x0.5mm.
- 3. The GRM03 type is a complete line of chip ceramic capacitors in 25V ratings, The GRM15 type is a complete line of chip ceramic capacitors in 50V ratings.
- 4. These capacitors have temperature characteristics ranging C0G.
- 5. GRM03 and GRM15 type are applied to only reflow soldering.
- 6. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 7. The GRM series is available in paper tape and reel packaging for automatic placement.

Part Number	Dimensions (mm)								
Part Number	L	W	T	е	g min.				
GRM033	0.6±0.03	0.3±0.03	0.3±0.03	0.1 to 0.2	0.2				
GRM155	1.0±0.05	0.5±0.05	0.5±0.05	0.15 to 0.3	0.4				

■ Applications

General electronic equipment

Temperature Compensating Type GRM03/15 Series

Part Number		GRM03	GRM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension	
0.10pF(R10)	M, N	0.30 (3)	0.50 (5)
0.20pF(R20)	K, M	0.30(3)	0.50 (5)
0.30pF(R30)	K, M	0.30(3)	0.50 (5)
0.40pF(R40)	K, M	0.30(3)	0.50 (5)
0.50pF(R50)	K, M	0.30(3)	0.50 (5)
0.60pF(R60)	K, M	0.30 (3)	0.50 (5)
0.70pF(R70)	K, M	0.30 (3)	0.50 (5)
0.80pF(R80)	K, M	0.30(3)	0.50 (5)
0.90pF(R90)	K, M	0.30(3)	0.50 (5)
1.0pF(1R0)	J, K	0.30(3)	0.50 (5)
1.1pF(1R1)	J, K	0.30(3)	0.50 (5)
1.2pF(1R2)	J, K	0.30(3)	0.50 (5)
1.3pF(1R3)	J, K	0.30 (3)	0.50 (5)
1.4pF(1R4)	J, K	0.30(3)	0.50 (5)
1.5pF(1R5)	J, K	0.30(3)	0.50 (5)
1.6pF(1R6)	J, K	0.30(3)	0.50 (5)
1.7pF(1R7)	J, K	0.30(3)	0.50 (5)
1.8pF(1R8)	J, K	0.30(3)	0.50 (5)
1.9pF(1R9)	J, K	0.30(3)	0.50 (5)

The part numbering code is shown in ().

Continued from the preceding page.

Part Number		GRM03	GRM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension	
2.0pF(2R0)	G, J	0.30(3)	0.50 (5)
2.1pF(2R1)	G, J	0.30(3)	0.50 (5)
2.2pF(2R2)	G, J	0.30(3)	0.50 (5)
2.3pF(2R3)	G, J	0.30(3)	0.50 (5)
2.4pF(2R4)	G, J	0.30(3)	0.50 (5)
2.5pF(2R5)	G, J	0.30(3)	0.50 (5)
2.6pF(2R6)	G, J	0.30(3)	0.50 (5)
2.7pF(2R7)	G, J	0.30(3)	0.50 (5)
2.8pF(2R8)	G, J	0.30(3)	0.50 (5)
2.9pF(2R9)	G, J	0.30(3)	0.50 (5)
3.0pF(3R0)	G, J	0.30(3)	0.50(5)
3.1pF(3R1)	G, J	0.30(3)	0.50 (5)
3.2pF(3R2)	G, J	0.30(3)	0.50(5)
3.3pF(3R3)	G, J	0.30(3)	0.50 (5)
3.4pF(3R4)	G, J	0.30(3)	0.50 (5)
3.5pF(3R5)	G, J	0.30(3)	0.50 (5)
3.6pF(3R6)	G, J	0.30(3)	0.50(5)
3.7pF(3R7)	G, J	0.30(3)	0.50 (5)
3.8pF(3R8)	G, J	0.30(3)	0.50(5)
3.9pF(3R9)	G, J	0.30(3)	0.50(5)
4.0pF(4R0) 4.1pF(4R1)	G, J	0.30(3) 0.30(3)	0.50(5) 0.50(5)
4.1pF(4R1) 4.2pF(4R2)	G, J G, J	0.30(3)	0.50(5)
4.2pF(4R2) 4.3pF(4R3)	G, J	0.30(3)	0.50(5)
4.4pF(4R4)	G, J	0.30(3)	0.50(5)
4.5pF(4R5)	G, J	0.30(3)	0.50(5)
4.6pF(4R6)	G, J	0.30(3)	0.50(5)
4.7pF(4R7)	G, J	0.30(3)	0.50(5)
4.8pF(4R8)	G, J	0.30(3)	0.50(5)
4.9pF(4R9)	G, J	0.30(3)	0.50(5)
5.0pF(5R0)	F, G	0.30(3)	0.50(5)
5.1pF(5R1)	F, G	0.30(3)	0.50(5)
5.2pF(5R2)	F, G	0.30(3)	0.50(5)
5.3pF(5R3)	F, G	0.30(3)	0.50(5)
5.4pF(5R4)	F, G	0.30(3)	0.50(5)
5.5pF(5R5)	F, G	0.30(3)	0.50(5)
5.6pF(5R6)	F, G	0.30(3)	0.50 (5)
5.7pF(5R7)	F, G	0.30(3)	0.50(5)
5.8pF(5R8)	F, G	0.30(3)	0.50 (5)
5.9pF(5R9)	F, G	0.30(3)	0.50 (5)
6.0pF(6R0)	F, G	0.30(3)	0.50 (5)
6.1pF(6R1)	F, G	0.30(3)	0.50 (5)
6.2pF(6R2)	F, G	0.30(3)	0.50(5)
6.3pF(6R3)	F, G	0.30(3)	0.50 (5)
6.4pF(6R4)	F, G	0.30(3)	0.50 (5)
6.5pF(6R5)	F, G	0.30(3)	0.50 (5)
6.6pF(6R6)	F, G	0.30(3)	0.50 (5)
6.7pF(6R7)	F, G	0.30(3)	0.50 (5)
6.8pF(6R8)	F, G	0.30(3)	0.50 (5)
6.9pF(6R9)	F, G	0.30(3)	0.50(5)

The part numbering code is shown in $\ (\).$

Part Number		GRM03	GRM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitance Tolera	nce and T Dimension	
7.0pF(7R0)	F, G	0.30 (3)	0.50(5)
7.1pF(7R1)	F, G	0.30 (3)	0.50(5)
7.2pF(7R2)	F, G	0.30 (3)	0.50 (5)
7.3pF(7R3)	F, G	0.30 (3)	0.50 (5)
7.4pF(7R4)	F, G	0.30 (3)	0.50 (5)
7.5pF(7R5)	F, G	0.30 (3)	0.50 (5)
7.6pF(7R6)	F, G	0.30 (3)	0.50 (5)
7.7pF(7R7)	F, G	0.30(3)	0.50 (5)
7.8pF(7R8)	F, G	0.30(3)	0.50 (5)
7.9pF(7R9)	F, G	0.30(3)	0.50 (5)
8.0pF(8R0)	F, G	0.30(3)	0.50 (5)
8.1pF(8R1)	F, G	0.30(3)	0.50 (5)
8.2pF(8R2)	F, G	0.30(3)	0.50 (5)
8.3pF(8R3)	F, G	0.30(3)	0.50 (5)
8.4pF(8R4)	F, G	0.30(3)	0.50 (5)
8.5pF(8R5)	F, G	0.30(3)	0.50 (5)
8.6pF(8R6)	F, G	0.30(3)	0.50 (5)
8.7pF(8R7)	F, G	0.30(3)	0.50 (5)
8.8pF(8R8)	F, G	0.30(3)	0.50 (5)
8.9pF(8R9)	F, G	0.30(3)	0.50 (5)
9.0pF(9R0)	F, G	0.30(3)	0.50 (5)
9.1pF(9R1)	F, G	0.30(3)	0.50 (5)
9.2pF(9R2)	F, G	0.30(3)	0.50 (5)
9.3pF(9R3)	F, G	0.30(3)	0.50 (5)
9.4pF(9R4)	F, G	0.30(3)	0.50 (5)
9.5pF(9R5)	F, G	0.30(3)	0.50 (5)
9.6pF(9R6)	F, G	0.30(3)	0.50(5)
9.7pF(9R7)	F, G	0.30 (3)	0.50 (5)
9.8pF(9R8)	F, G	0.30 (3)	0.50(5)
9.9pF(9R9)	F, G	0.30 (3)	0.50 (5)

The part numbering code is shown in ().

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. 05.12.14

Chip Monolithic Ceramic Capacitors

Thin Type (Flow/Reflow)

■ Features

- 1. This series is suited to flow and reflow soldering. Capacitor terminations are made of metal highly resistant to migration.
- 2. Large capacitance values enable excellent bypass effects to be realized.
- 3. Its thin package makes this series ideally suited for the production of small electronic products and for mounting underneath ICs.

■ Applications

Thin equipment such as IC cards

Part Number	Dimensions (mm)					
Part Number	L	W	Т	е	g min.	
GRM15X	1.0 ±0.05	0.5 ±0.05	0.25 ±0.05	0.1 to 0.3	0.4	

Temperature Compensating Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM15X5C1H1R0CDB4	C0G (EIA)	50	1.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H2R0CDB4	C0G (EIA)	50	2.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H3R0CDB4	C0G (EIA)	50	3.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H4R0CDB4	C0G (EIA)	50	4.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H5R0CDB4	C0G (EIA)	50	5.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H6R0DDB4	C0G (EIA)	50	6.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H7R0DDB4	C0G (EIA)	50	7.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H8R0DDB4	C0G (EIA)	50	8.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H9R0DDB4	C0G (EIA)	50	9.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H100JDB4	C0G (EIA)	50	10 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H120JDB4	COG (EIA)	50	12 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H150JDB4	COG (EIA)	50	15 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H180JDB4	COG (EIA)	50	18 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H220JDB4	C0G (EIA)	50	22 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H270JDB4	C0G (EIA)	50	27 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H330JDB4	C0G (EIA)	50	33 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H390JDB4	C0G (EIA)	50	39 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H470JDB4	C0G (EIA)	50	47 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H560JDB4	C0G (EIA)	50	56 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H680JDB4	C0G (EIA)	50	68 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H820JDB4	COG (EIA)	50	82 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H101JDB4	COG (EIA)	50	100 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E121JDB4	COG (EIA)	25	120 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E151JDB4	COG (EIA)	25	150 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E181JDB4	C0G (EIA)	25	180 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E221JDB4	COG (EIA)	25	220 ±5%	1.00	0.50	0.25	0402

High Dielectric Constant Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM15XR71H221KA86	X7R (EIA)	50	220 ±10%	1.00	0.50	0.25	0402
GRM15XR71H331KA86	X7R (EIA)	50	330 ±10%	1.00	0.50	0.25	0402
GRM15XR71H471KA86	X7R (EIA)	50	470 ±10%	1.00	0.50	0.25	0402
GRM15XR71H681KA86	X7R (EIA)	50	680 ±10%	1.00	0.50	0.25	0402
GRM15XR71H102KA86	X7R (EIA)	50	1000 ±10%	1.00	0.50	0.25	0402
GRM15XR71H152KA86	X7R (EIA)	50	1500 ±10%	1.00	0.50	0.25	0402
GRM15XR71E222KA86	X7R (EIA)	25	2200 ±10%	1.00	0.50	0.25	0402
GRM15XR71C332KA86	X7R (EIA)	16	3300 ±10%	1.00	0.50	0.25	0402
GRM15XR71C472KA86	X7R (EIA)	16	4700 ±10%	1.00	0.50	0.25	0402
GRM15XR71C682KA86	X7R (EIA)	16	6800 ±10%	1.00	0.50	0.25	0402
GRM15XR61A223KA86	X5R (EIA)	10	22000 ±10%	1.00	0.50	0.25	0402
GRM15XR61A333KA86	X5R (EIA)	10	33000 ±10%	1.00	0.50	0.25	0402

		Specifi	cations				
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method			
1	Operating Temperature Range	-55 to +125°C	B1, B3, F1, R6 : −25 to +85°C R1, R7 : −55 to +125°C E4 : +10 to +85°C F5 : −30 to +85°C	Reference temperature : 25°C (2Δ, 3Δ, 4Δ, B1, B3, F1, R1, R6 : 20°C)			
2	Rated Voltage	See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{o.p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance	No defects or abnormalities		Visual inspection			
4	Dimensions	Within the specified dimensions	1	Using calipers			
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when *300% of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V			
6	Insulation Resistance	C≦0.047μF : More than 10,0000 C>0.047μF : 500Ω · F	MΩ C : Nominal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25℃ and 75%RH max. and within 2 minutes of charging, provided the charge/ discharge current is less than 50mA.			
7	Capacitance	Within the specified tolerance		The capacitance/Q/D.F. should be measured at 20/25°C at the			
8	Q/ Dissipation Factor (D.F.)	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Char.			

Continued from the preceding page.

		om the preci								
D1			•	cations			T 1 1 1	thest		
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method					
		No bias	Within the specified tolerance (Table A-1)	B1, B3 : Within ±10% (-25 to +85°C) R1, R7 : Within ±15% (-55 to +125°C) R6 : Within ±15% (-55 to +85°C) E4 : Within +22/-56% (+10 to +85°C) F1 : Within +30/-80% (-25 to +85°C) F5 : Within +22/-82% (-30 to +85°C) C8 : Within ±22% (-55 to +105°C)	each speci (1)Temper The tempe capacitanc When cycli 5 (5C: +2! : +25 to +4 the specific capacitanc The capaci between th	fied temperature Corrature corrections of the temperature to the temperature to the temperature that the temperatu	o. stage. Impensating Typefficient is derived in step 3 are perature set of the tender of the tender as Table A-1 iff is calculated um and mining the cap. value	ype termined as a refer quentially o +125°C capacita nperature . d by divid	ence. If from step 1 through the other temp, coeffs ince should be within coefficient and ing the differences sured values in the	s.
					. 30	•		•	perature ±2	I
		500/ f		D4 . W//II.: - 140/. 000/		2			±3 (for other TC)	
		50% of the Rated		B1 : Within +10/–30% R1 : Within +15/–40%		3	-	-		
		Voltage		F1 : Within +30/–95%		4			perature ±2	
	Tomago						`		:3 (for other TC)	
					·		Constant Type		perature ±2	
9	Capacitance Temperature Characteristics				The ranges of capacitance change compared with the 20°C value over the temperature ranges shown in the table should be within the specified ranges.* In case of applying voltage, the capacitance change should b measured after 1 more min. with applying voltage in equilibration of each temp. stage.					
					Step		nperature (°C	_	Applying Voltage (<u>(V)</u>
		Capacitance Drift Within ±0.2% or ±0.05pF (Whichever is larger.) *Not apply to 1X/25V *Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.	pacitance (Whichever is larger.)	Perform a heat treatment at	2 3 4	-55± -25± -30±3 Refere	nce Temperet =3 (for R1, R7 =3 (for B1, B3 (for F5)/10±3 nce Temperet =5±3 (for R1, R =3 (for B1, B3, F1, F5, E4)	, R6) , F1) (for E4) ture ±2	No bias	
			and then set for 24±2 hours	5	Refere	Reference Tempereture ±2				
				1	6		-55±3 (for R1)/			
					5±3 (for B1, F		50% of the rated			
				moded of the first	7	Refere	nce Temperet	ture ±2	voltage	
					8		125±3 (for R1)/ 85±3 (for B1, F1)			
			No removal of the terminations or other defect should occur.		Fig. 1a usii parallel wit The solder reflow metl soldering is	ng an eur h the tes ing shou hod and : s uniform	tectic solder. t jig for 10±1 : Id be done eitl should be con	Then app sec. her with a ducted w efects su	poxy board) shown by 10N° force in an iron or using the ith care so that the ch as heat shock. GRM18) (in mm)	
	Adhesive	Strength	<u> </u>		Ту	pe	а	b	С	
10	of Termin	_	Ω		GRM02		0.2	0.56		
					GR□03		0.3	0.9	0.3	
				~ ~~	GR□15		0.4	1.5	0.5	
				Baked electrode or copper foil	GRM18		1.0	3.0	1.2	
			Eig 1a	FF 10"	GRM21 GRM31		1.2 2.2	4.0 5.0	1.65 2.0	
			Fig. 1a		GRM32		2.2	5.0	2.9	
					GRM43		3.5	7.0	3.7	
					GRM55		4.5	8.0	5.6	
							<u> </u>			

Continued from the preceding page.

Vo.			· ·	cations		T 1.04	the od	
	Ite	em	Temperature Compensating Type	High Dielectric Type		Test Me	ethod	
		Appearance	No defects or abnormalities					
		Capacitance	Within the specified tolerance					
11	Vibration Resistance	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	Solder the capacitor on the test jig (glass epoxy board) it is same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic having a total amplitude of 1.5mm, the frequency being a uniformly between the approximate limits of 10 and 55Hz frequency range, from 10 to 55Hz and return to 10Hz, she traversed in approximately 1 minute. This motion sho applied for a period of 2 hours in each 3 mutually perpendirections (total of 6 hours). Solder the capacitor on the test jig (glass epoxy board) s			harmonic motior cy being varied and 55Hz. The 10Hz, should otion should be lly perpendicular	
			No crack or marked defect shou	uld occur.	in Fig. 2a using ar	-		
					direction shown in	-		-
					done either with a be conducted with	•		
					of defects such as		io coldoning io	armorni ana noc
12	12 Deflection		R230 R230		100 Fig. t	04.5 0 0 0 0 0 0 0 0 0 0 0 0 0	03/15 : t : 0.8mm)	
					Туре	а	b	С
					GRM02	0.2	0.56	0.23
			Capacitance n		GR□03	0.3	0.9	0.3
			45	45	GR 15	0.4	1.5	0.5 1.2
			Fig. 20		GRM18 GRM21	1.0	3.0 4.0	1.65
			Fig. 3a		GRM31	2.2	5.0	2.0
					GRM32	2.2	5.0	2.9
					GRM43	3.5	7.0	3.7
					GRM55	4.5	8.0	5.6 (in mm)
13	Solderab Terminati		75% of the terminations are to be continuously.	pe soldered evenly and	Immerse the capa rosin (JIS-K-5902) Preheat at 80 to 1 After preheating, i 2±0.5 seconds at for 2±0.5 seconds) (25% rosin in 20℃ for 10 to 3 mmerse in an e 230±5℃ or Sn	weight proport 60 seconds. eutectic solder	solution for
			The measured and observed ch specifications in the following ta	-				
		Appearance	No defects or abnormalities					
				T	=			
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4 : Within ±20%	Preheat the capace	citor in an eute	ctic solder or	Sn-3.0Ag-0.5Cu
14	Resistance to Soldering Heat			: Within ±7.5%		acitor in an eute 270±5°C for 10: 4±2 hours, ther ent for high diel eatment at 150-lemperature for measurement.	ctic solder or s ±0.5 seconds in measure. ectric constan h0/-10°C for o 24±2 hours.	Sn-3.0Ag-0.5Cu . Set at room t type
14	to Soldering	Change Q/D.F.	(Whichever is larger) 30pF and over : Q≧1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	: Within ±7.5% F1, F5, E4: Within ±20% [B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C≤3.3μF) : 0.1 max. (C≧3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≧0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Immerse the capa solder solution at temperature for 24 Initial measurement Perform a heat treathen set at room to Perform the initial Preheating for Gl	acitor in an eute 270±5°C for 10: 4±2 hours, ther ent for high diel eatment at 150-lemperature for measurement. RM32/43/55 Temperature 100 to 120°C	ctic solder or s ±0.5 seconds in measure. ectric constan h0/-10°C for o 24±2 hours.	Sn-3.0Ag-0.5Cu Set at room t type ne hour and Time 1 min.
4	to Soldering	Change	(Whichever is larger) 30pF and over : Q≥1000 30pF and below : Q≥400+20C	: Within ±7.5% F1, F5, E4: Within ±20% [B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C≤3.3μF) : 0.1 max. (C≧3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≧0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Immerse the capa solder solution at temperature for 24 Initial measurement Perform a heat treathen set at room to Perform the initial Preheating for Gl	acitor in an eute 270±5°C for 10: 4±2 hours, ther ent for high diel eatment at 150-lemperature for measurement. RM32/43/55 Temperature 100 to 120°C	ctic solder or s ±0.5 seconds in measure. ectric constan h0/-10°C for o 24±2 hours.	Sn-3.0Ag-0.5Ct Set at room t type ne hour and Time 1 min.

Continued from the preceding page

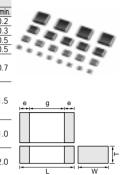
			Specifi	cations					
Ο.	lte	em	Temperature Compensating Type	High Dielectric Type		Test	t Method	I	
		The measured and observed cha specifications in the following tab							
		Appearance	No defects or abnormalities						
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4 : Within ±20%	Fix the capacitor to the supporting jig in the samanner and under the same conditions as (10). Perform the five cycles according to the four here.		s as (10).	atments	
				[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max.	shown in the fo	ours at room te		<u> </u>	
				W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V	Step	1	2	3	4
5 Temperature Cycle		' SUDE AND OVEL. Q≦ 1000	: 0.05 max. (C<3.3μF) : 0.1 max. (C≧3.3μF)	Temp. (℃)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.	
			Q=4001200	[F1, F5] W.V. : 25V min.	Time (min.)	30±3	2 to 3	30±3	2 to 3
			C : Nominal Capacitance (pF)	: 0.05 max. (C<0.1µF) : 0.09 max. (C≥0.1µF) W.V. : 16/10V : 0.125 max. W.V. : 6.3V : 0.15 max.	•Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement.				
		I.R.	More than $10,000 \mathrm{M}\Omega$ or 500Ω .						
				F (Whichever is smaller)					
		Dielectric Strength	No defects	F (Whichever is smaller)	_				
				naracteristics should satisfy the					
			No defects The measured and observed ch	naracteristics should satisfy the					
		Strength	No defects The measured and observed ch specifications in the following ta	naracteristics should satisfy the					
6	Humidity (Steady State)	Appearance Capacitance	No defects The measured and observed chapecifications in the following tandal No defects or abnormalities Within ±5% or ±0.5pF	B1, B3, R1, R6, R7, C8	Set the capacit 500±12 hours. Remove and s measure.				•

Continued from the preceding page.

			Specifi	cations	
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4 : Within ±30% [W.V. : 10V max.] F1, F5 : Within +30/-40%	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room
17	Humidity Load	F1, F5 : Within +30/-40% [B1, B3, R1, R6, R7, E4, C W.V. : 25V min. : 0.05 max W.V. : 16/10V : 0.05 max W.V. : 16/10V : 0.05 max W.V. : 6.3V : 0.075 max. (C<3.3μ : 0.125 max. (C≥3.3μ [F1, F5] W.V. : 25V min. : 0.075 max. (C≥0.1μF		W.V.: 6.3V : 0.075 max. (C<3.3µF) : 0.125 max. (C≥3.3µF) [F1, F5] W.V.: 25V min. : 0.075 max. (C<0.1µF) : 0.125 max. (C≥0.1µF) W.V.: 16/10V: 0.15 max.	temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 24±2 hours at room temperature. Perform initial measurement.
		I.R.	More than $500 \text{M}\Omega$ or $25 \Omega \cdot \text{F}$ (V	Vhichever is smaller)	
			The measured and observed ch specifications in the following ta	•	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [Except 10V max. and. C≥1.0µF] F1, F5: Within +30/−40% [10V max. and C≥1.0µF]	Apply *200% of the rated voltage at the maximum operating temperature ±3°c for 1000±12 hours. Set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
18	High Temperature Load		30pF and over : Q≥350 10pF and over 30pF and below :	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.05 max. W.V.: 16/10V: 0.05 max. W.V.: 6.3V : 0.075 max.(C≤3.3µF) : 0.125 max.(C≧3.3µF)	•Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximum operating temperature ±3°C for one hour. Remove and set for 24±2 hours at room temperature. Perform initial measurement.
		Q/D.F.	Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[F1, F5] W.V.: 25V min. : 0.075 max.(C<0.1μF) : 0.125 max.(C≥0.1μF) W.V.: 16/10V: 0.15 max. W.V.: 6.3V: 0.2 max.	*150% for 500V

Chip Monolithic Ceramic Capacitors

Large Capacitance Type


■ Features

- 1. Smaller size and higher capacitance value
- 2. High reliability and no polarity
- 3. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency
- 4. Ta replacement

Applications

General electronic equipment

Part Number		Dime	nsions (mi	n)	
Part Number	L	W	Т	e min.	g min.
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.2	0.2 to 0.5	0.5
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5
GRM216			0.6 ±0.1		
GRM219	2.0 ±0.1 1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7
GRM21B			1.25 ±0.1		
GRM316			0.6 ±0.1		
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5
GRM31M			1.15 ±0.1	0.3 10 0.6	
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		
GRM32C			1.6 ±0.2		
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 ±0.2	0.3	1.0
GRM32E			2.5 ±0.2		
GRM43D			2.0 ±0.2		
GRM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0
GRM43S			2.8 ±0.2		
GRM55F	5.7 +0.4	5.0 +0.4	3.2 ±0.2	0.3	2.0

High Dielectric Constant Type X5R (R6) Characteristics

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188R61E474KA12	X5R (EIA)	25	0.47μF ±10%	1.60	0.80	0.80
GRM188R61E105KA12	X5R (EIA)	25	1.0μF ±10%	1.60	0.80	0.80
GRM21BR61E105KA99	X5R (EIA)	25	1.0μF ±10%	2.00	1.25	1.25
GRM219R61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.00	1.25	0.85
GRM21BR61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.00	1.25	1.25
GRM21BR61E335KA12	X5R (EIA)	25	3.3μF ±10%	2.00	1.25	1.25
GRM21BR61E475KA12	X5R (EIA)	25	4.7μF ±10%	2.00	1.25	1.25
GRM319R61E475KA12	X5R (EIA)	25	4.7μF ±10%	3.20	1.60	0.85
GRM31CR61E106KA12	X5R (EIA)	25	10μF ±10%	3.20	1.60	1.60
GRM32ER61E226KE15	X5R (EIA)	25	22μF ±10%	3.20	2.50	2.50
GRM188R61C474KA93	X5R (EIA)	16	0.47μF ±10%	1.60	0.80	0.80
GRM185R61C105KE44	X5R (EIA)	16	1.0μF ±10%	1.60	0.80	0.50
GRM188R61C105KA93	X5R (EIA)	16	1.0μF ±10%	1.60	0.80	0.80
GRM216R61C105KA88	X5R (EIA)	16	1.0μF ±10%	2.00	1.25	0.60
GRM188R61C225KE15	X5R (EIA)	16	2.2μF ±10%	1.60	0.80	0.80
GRM219R61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	0.85
GRM21BR61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	1.25
GRM316R61C225KA88	X5R (EIA)	16	2.2μF ±10%	3.20	1.60	0.60
GRM21BR61C335KA88	X5R (EIA)	16	3.3μF ±10%	2.00	1.25	1.25
GRM21BR61C475KA88	X5R (EIA)	16	4.7μF ±10%	2.00	1.25	1.25
GRM319R61C475KA88	X5R (EIA)	16	4.7μF ±10%	3.20	1.60	0.85
GRM32ER61C226KE20	X5R (EIA)	16	22μF ±10%	3.20	2.50	2.50
GRM43ER61C226KE01	X5R (EIA)	16	22μF ±10%	4.50	3.20	2.50
GRM32ER61C476KE15	X5R (EIA)	16	47μF ±10%	3.20	2.50	2.50
GRM155R61A154KE19	X5R (EIA)	10	0.15μF ±10%	1.00	0.50	0.50
GRM155R61A224KE19	X5R (EIA)	10	0.22μF ±10%	1.00	0.50	0.50
GRM185R61A105KE36	X5R (EIA)	10	1.0μF ±10%	1.60	0.80	0.50
GRM188R61A225KE34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM188R61A225ME34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM216R61A225KE24	X5R (EIA)	10	2.2μF ±10%	2.00	1.25	0.60
GRM219R61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.00	1.25	0.85
GRM316R61A225KA01	X5R (EIA)	10	2.2μF ±10%	3.20	1.60	0.60
GRM219R61A335KE19	X5R (EIA)	10	3.3μF ±10%	2.00	1.25	0.85
GRM21BR61A335KA73	X5R (EIA)	10	3.3μF ±10%	2.00	1.25	1.25
GRM316R61A335KE19	X5R (EIA)	10	3.3μF ±10%	3.20	1.60	0.60
GRM219R61A475KE34	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	0.85

4
I 🗪

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM21BR61A475KA73	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	1.25
GRM316R61A475KE19	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.60
GRM319R61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.85
GRM21BR61A106KE19	X5R (EIA)	10	10μF ±10%	2.00	1.25	1.25
GRM21BR61A106ME19	X5R (EIA)	10	10μF ±20%	2.00	1.25	1.25
GRM319R61A106KA19	X5R (EIA)	10	10μF ±10%	3.20	1.60	0.85
GRM31MR61A106KE19	X5R (EIA)	10	10μF ±10%	3.20	1.60	1.15
GRM32NR61A226KE19	X5R (EIA)	10	22μF ±10%	3.20	2.50	1.35
GRM32ER61A476KE20	X5R (EIA)	10	47μF ±10%	3.20	2.50	2.50
GRM43ER61A476KE19	X5R (EIA)	10	47μF ±10%	4.50	3.20	2.50
GRM033R60J153KE01	X5R (EIA)	6.3	15000pF ±10%	0.60	0.30	0.30
GRM033R60J223KE01	X5R (EIA)	6.3	22000pF ±10%	0.60	0.30	0.30
GRM033R60J333KE01	X5R (EIA)	6.3	33000pF ±10%	0.60	0.30	0.30
GRM033R60J393KE19	X5R (EIA)	6.3	39000pF ±10%	0.60	0.30	0.30
GRM033R60J473KE19	X5R (EIA)	6.3	47000pF ±10%	0.60	0.30	0.30
GRM033R60J683KE19	X5R (EIA)	6.3	68000pF ±10%	0.60	0.30	0.30
GRM033R60J104KE19	X5R (EIA)	6.3	0.10μF ±10%	0.60	0.30	0.30
GRM155R60J154KE01	X5R (EIA)	6.3	0.15μF ±10%	1.00	0.50	0.50
GRM155R60J224KE01	X5R (EIA)	6.3	0.22μF ±10%	1.00	0.50	0.50
GRM155R60J334KE01	X5R (EIA)	6.3	0.33μF ±10%	1.00	0.50	0.50
GRM155R60J474KE19	X5R (EIA)	6.3	0.47μF ±10%	1.00	0.50	0.50
GRM155R60J105KE19	X5R (EIA)	6.3	1.0μF ±10%	1.00	0.50	0.50
GRM185R60J105KE21	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J105KE26	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J225KE26	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.50
GRM188R60J225KE01	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J225KE19	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	1.60	0.80	0.80
GRM219R60J475KE01	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J475KE32	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	0.85
GRM219R60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	0.85
GRM21BR60J106KE01	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106ME01	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM21BR60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM319R60J106KE01	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	0.85
GRM319R60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	0.85
GRM31MR60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	1.15
GRM31CR60J156KE19	X5R (EIA)	6.3	15μF ±10%	3.20	1.60	1.60
GRM21BR60J226ME39	X5R (EIA)	6.3	22μF ±20%	2.00	1.25	1.25
GRM31CR60J226KE19	X5R (EIA)	6.3	22μF ±10%	3.20	1.60	1.60
GRM31CR60J226ME19	X5R (EIA)	6.3	22μF ±20%	3.20	1.60	1.60
GRM32DR60J226KA01	X5R (EIA)	6.3	22μF ±10%	3.20	2.50	2.00
GRM32DR60J336ME19	X5R (EIA)	6.3	33μF ±10%	3.20	2.50	2.00
GRM43DR60J336KE01	X5R (EIA)	6.3	33μF ±10%	4.50	3.20	2.00
GRM31CR60J476ME19	X5R (EIA)	6.3	47μF ±20%	3.20	1.60	1.60
GRM32ER60J476ME20	X5R (EIA)	6.3	47μF ±20%	3.20	2.50	2.50
GRM43ER60J476KE01	X5R (EIA)	6.3	47μF ±10%	4.50	3.20	2.50
GRM32ER60J107ME20	X5R (EIA)	6.3	100μF ±20%	3.20	2.50	2.50
GRM43SR60J107ME20	X5R (EIA)	6.3	100μF ±20%	4.50	3.20	2.80
GRM188R60G106ME47	X5R (EIA)	4	10μF ±20%	1.60	0.80	0.80

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. 05.12.14

High Dielectric Constant Type X6S/X7R/X7S (C8/R7/C7) Characteristics

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188C80G475KE19	X6S(EIA)	4	4.7 ±10%	1.60	0.80	0.80
GRM21BR71E225KA73	X7R (EIA)	25	2.2 ±10%	2.00	1.25	1.25
GRM55ER71E156KA01	X7R (EIA)	25	15 ±10%	5.70	5.00	2.50
GRM31CR71C106KAC7	X7R (EIA)	16	10 ±10%	3.20	1.60	1.60
GRM32ER71A226KE20	X7R (EIA)	10	22 ±10%	3.20	2.50	2.50
GRM32ER71A226ME20	X7R (EIA)	10	22 ±20%	3.20	2.50	2.50
GRM43ER71A226KE01	X7R (EIA)	10	22 ±10%	4.50	3.20	2.50
GRM21BC71A335KA73	X7S(EIA)	10	3.3 ±10%	2.00	1.25	1.25
GRM21BC71A475KA73	X7S(EIA)	10	4.7 ±10%	2.00	1.25	1.25

High Dielectric Constant Type Y5V (F5) Characteristics

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188F51A225ZE01	Y5V (EIA)	10	2.2 +80/-20%	1.60	0.80	0.80
GRM188F51A475ZE20	Y5V (EIA)	10	4.7 +80/-20%	1.60	0.80	0.80
GRM31CF51A226ZE01	Y5V (EIA)	10	22 +80/-20%	3.20	1.60	1.60
GRM32CF51A226ZA01	Y5V (EIA)	10	22 +80/-20%	3.20	2.50	1.60
GRM155F50J105ZE01	Y5V (EIA)	6.3	1.0 +80/-20%	1.00	0.50	0.50
GRM188F50J225ZE01	Y5V (EIA)	6.3	2.2 +80/-20%	1.60	0.80	0.80
GRM188F50J475ZE20	Y5V (EIA)	6.3	4.7 +80/-20%	1.60	0.80	0.80
GRM21BF50J106ZE01	Y5V (EIA)	6.3	10 +80/-20%	2.00	1.25	1.25
GRM31CF50J226ZE01	Y5V (EIA)	6.3	22 +80/-20%	3.20	1.60	1.60
GRM32EF50J107ZE20	Y5V (EIA)	6.3	100 +80/-20%	3.20	2.50	2.50

No.	Ite	em	Specifications			Tes	st Method	
1	Operating Tempera Range		B1, B3, F1 : -25 to +85°C R6 : -55 to +85°C F5 : -30 to +85°C C8 : -55 to +105°C, C7 : -55 to +125°C		Reference (B1, B3, F1	temperature : 25℃ I : 20℃)	С	
2	Rated Voltage		See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated voltage range.			itor. voltage, V ^{p.p} or V ^{o.p} ,
3	Appearar	nce	No defects or abnormalities		Visual insp	ection		
4	Dimensio	ns	Within the specified dimensions		Using calip	ers		
5	Dielectric	: Strength	No defects or abnormalities		is applied b	should be observe between the termine charge/discharge	nations for 1 t	
6	Insulation Resistant		More than $50\Omega \cdot F$		not exceed 75%RH ma		ge at reference nutes of charg	, 0, 1
7	7 Capacitance		*Table 1 GRM155 B3/R6 1A 124 GRM185 B3/R6 1A 105 GRM188 B3/R6 1C/1A GRM219 B3/R6 1A 175 GRM21B B3/R6 1C/1A	i to 224 i 225	at the frequ	uency and voltage apacitance µF (10V min.)*1 µF (6.3V max.)	shown in the Frequency 1±0.1kHz 1±0.1kHz 120±24Hz is 0.5±0.1Vrr	Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms
8	8 Dissipation Factor (D.F.)		B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max. *Table 1 GRM155 B3/R6 1A 124 GRM185 B3/R6 1A 105 GRM188 B3/R6 1C/1A GRM219 B3/R6 1A 475 GRM21B B3/R6 1C/1A	i to 224 i 225	C≦10µF (6.3V max.) 1±0.1kHz 0.		Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms	
	No bias		B1, B3 : Within ±10% (−25 to +85°C) F1 : Within +30/−80% (−25 to +85°C) R6 : Within ±15% (−55 to +85°C) F5 : Within +22/−82% (−30 to +85°C) C7 : Within ±22% (−55 to +125°C) C8 : Within ±22% (−55 to +105°C)		each speci The ranges reference t shown in the In case of a measured equilibratio	fied temp. stage. s of capacitance c emperature value ne table should be	hange compa over the tem within the sp the capacitant with applying tage.	perature ranges ecified ranges.* ce change should be voltage in
					Step	Temperature	e (°C)	Applying Voltage (V)
9	Capacitance Temperature				1 2	Reference temp -55±3 (for R6 -25±3 (for B1 -30±3 (for	pereture ±2 6, C7, C8)/ 1, B3, F1)	
	Characteristics				3	Reference temp	,	No bias
		50% of	B1: Within +10/-30%		4	85±3 (for B1, B3 125±3 (fo 105±3 (fo	, F1, R6, F5) r C7)/	
		the Rated	F1: Within +30/-95%		5	20±2	,	
		Voltage			6	-25±3 (for		500/ af the control
						-		50% of the rated
					7	20±2		voltage
					Perform a l then set for	85±3 (for E surement for high neat treatment at r 24±2 hours at ro e initial measurem	dielectric col 150 +0/-10°0 nom temperati	C for one hour and

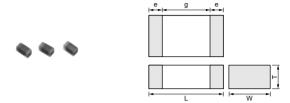
Continued from the preceding page.

No.	o. Item		Specifications	Test Method				
			No removal of the terminations or other defects should occur.		Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 1a using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N: GR□15/GRM18, 2N: GR□33			
10	Adhesive	nesive Strength		Туре	a	b	С	
10				GR□03	0.3	0.9	0.3	
			- 124 124 124 124 124 124 124 124 124 124	GR□15	0.4	1.5	0.5	
			Solder resist	GRM18 GRM21	1.0 1.2	3.0 4.0	1.2 1.65	
			Baked electrode or copper foil	GRM31	2.2	5.0	2.0	
			Fig. 1a	GRM32	2.2	5.0	2.9	
			rig. id	GRM43	3.5	7.0	3.7	
				GRM55	4.5	8.0	5.6	
		Appearance	No defects or abnormalities	Solder the capacito	or on the test jig	g (glass epoxy	board) in the	
		Capacitance	Within the specified tolerance	same manner and	under the sam	e conditions a	s (10).	
				The capacitor shou	ıld be subjecte	d to a simple h	armonic motion	
				having a total ampl	litude of 1.5mm	n, the frequenc	y being varied	
11	Vibration			uniformly between	the approxima	te limits of 10	and 55Hz. The	
		D.F.	B1, B3, R6, C7, C8 : 0.1 max.	frequency range, fr	om 10 to 55Hz	and return to	10Hz, should	
			F1, F5 : 0.2 max.	be traversed in app	-			
				applied for a period	d of 2 hours in e	each 3 mutual	ly perpendicular	
				directions (total of	6 hours).			
12	12 Deflection		No cracking or marking defects should occur. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 Capacitance meter 45 Fig.3a	Fig. 2a (GR□03, GR□15:t:0. Type a b c GR□03 0.3 0.9 0.3 GR□15 0.4 1.5 0.5 GRM18 1.0 3.0 1.2 GRM21 1.2 4.0 1.6 GRM31 2.2 5.0 2.0 GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7 GRM55 4.5 8.0 5.6		a force in the lering should be nod and should uniform and free t:1.6mm		
13	3 Solderability of Termination		75% of the terminations is to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-810 rosin (JIS-K-5902) (25% rosin in weight proportion) . Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in an eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.			on) . solution for	

Continued from the preceding page.

No.	Ite	em	Specifications		Tes	st Method	d		
		Appearance Capacitance Change	No defects or abnormalities B1, B3, R6, C7, C8: Within ±7.5% F1, F5: Within ±20%	Immerse the c solder solution	Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.3 solder solution at 270±5℃ for 10±0.5 seconds. Set at room temperature for 24±2 hours, then measure.				
14	Resistance	Q/D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max. •Initial measurement for high		nigh dielectric constant type				
	to	I.R.	More than $50\Omega \cdot F$	Perform a heat treatment at 150+0/−10°C for one then set at room temperature for 24±2 hours.			ur and		
	Soldering Heat			Perform the in	itial measurem	nent.			
		Dielectric Strength	No defects	Step		erature	Ti	ime	
		ou ongui		1	100 to	o 120℃	1 :	min.	
				2	170 to	o 200℃	1 :	min.	
		Appearance	No defects or abnormalities	<u> </u>			in the same m	anner and	
		Capacitance Change	B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20%	under the sam Perform the five shown in the f	ve cycles acco	ording to t	the four heat tr	eatments	
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	Set for 24±2 h	nours at room	temperat	ure, then meas		
	Temperature	I.R.	More than $50\Omega \cdot F$	Step	Min.	2	3 Max.	4	
15	Sudden Change		No detects	Temp. (℃)	Operating Temp. +0/-3	Room Temp.	Operating Temp. +3/-0	Room Temp.	
		Districts		Time (min.)	30±3	2 to 3	30±3	2 to 3	
		Dielectric Strength		l l	t treatment at m temperature	150+0/- e for 24±	c constant type 10°C for one ho 2 hours.		
		Appearance	No defects or abnormalities	Apply the rate	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. The charge/discharge current is less than 50m •Initial measurement				
	High	Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%						
16	Temperature High	D.F.	B1, B3, R6, C7, C8 : 0.2 max. F1, F5 : 0.4 max.	Perform a heat treatment a		at 150+0/—10℃ for one hour and at room temperature. Perform the			
	Humidity (Steady)	I.R.	More than 12.5 Ω · F	•Measuremen Perform a hea	initial measurement. •Measurement after test Perform a heat treatment at 150+0/-10°C f then let sit for 24±2 hours at room tempera				
		Appearance	No defects or abnormalities			•	000±12 hours		
		Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	room tempera	ture, then mea	sure.	C. Let sit for 24: than 50mA.	±∠ nours at	
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.4 max.	•Initial measur	The charge/discharge current is less t •Initial measurement				
17	Durability	I.R.	More than $25\Omega \cdot F$	then let sit for initial measure •Measuremen Perform a hea	24±2 hours at ement. t after test t treatment at	room ter 150+0/-	10℃ for one homperature. Perf	form the	

Chip Monolithic Ceramic Capacitors


High-Q GJM Series

■ Features

- 1. Mobile Telecommunication and RF module, mainly
- 2. Quality improvement of telephone call, Low power Consumption, yield ratio improvement

■ Applications

VCO, PA, Mobile Telecommunication

Part Number	Dimensions (mm)					
Part Number	L	W	T	е	g min.	
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	

Part Number	GJM03	GJM15
L x W [EIA]	0.60x0.30 [0201]	1.00x0.50 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
Capacitance (Cap	pacitance part numbering code) and T (mm) Dimension (T Dime	nsion part numbering code)
0.30pF(R30)	0.30(3)	0.50(5)
0.40pF(R40)	0.30(3)	0.50(5)
0.50pF(R50)	0.30(3)	0.50(5)
0.60pF(R60)	0.30(3)	0.50(5)
0.70pF(R70)	0.30(3)	0.50(5)
0.75pF(R75)	0.30(3)	0.50(5)
0.80pF(R80)	0.30(3)	0.50(5)
0.90pF(R90)	0.30(3)	0.50(5)
1.0pF(1R0)	0.30(3)	0.50(5)
1.1pF(1R1)	0.30(3)	0.50(5)
1.2pF(1R2)	0.30(3)	0.50(5)
1.3pF(1R3)	0.30(3)	0.50(5)
1.4pF(1R4)	0.30(3)	0.50(5)
1.5pF(1R5)	0.30(3)	0.50(5)
1.6pF(1R6)	0.30(3)	0.50(5)
1.7pF(1R7)	0.30(3)	0.50(5)
1.8pF(1R8)	0.30(3)	0.50 (5)
1.9pF(1R9)	0.30(3)	0.50 (5)
2.0pF(2R0)	0.30(3)	0.50 (5)
2.1pF(2R1)	0.30 (3)	0.50(5)
2.2pF(2R2)	0.30 (3)	0.50(5)
2.3pF(2R3)	0.30 (3)	0.50(5)
2.4pF(2R4)	0.30(3)	0.50 (5)
2.5pF(2R5)	0.30(3)	0.50 (5)
2.6pF(2R6)	0.30 (3)	0.50 (5)
2.7pF(2R7)	0.30 (3)	0.50(5)
2.8pF(2R8)	0.30 (3)	0.50(5)
2.9pF(2R9)	0.30(3)	0.50(5)
3.0pF(3R0)	0.30(3)	0.50(5)
3.1pF(3R1)	0.30(3)	0.50(5)
3.2pF(3R2)	0.30(3)	0.50(5)
3.3pF(3R3)	0.30(3)	0.50 (5)
3.4pF(3R4)	0.30(3)	0.50(5)

Continued from the preceding p

Part Number	GJM03	GJM15
L x W [EIA]	0.60x0.30 [0201]	1.00x0.50 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
	e part numbering code) and T (mm) Dimension (T Dimer	nsion part numbering code)
3.5pF(3R5)	0.30 (3)	0.50(5)
3.6pF(3R6)	0.30(3)	0.50(5)
3.7pF(3R7)	0.30(3)	0.50(5)
3.8pF(3R8)	0.30(3)	0.50 (5)
3.9pF(3R9) 4.0pF(4R0)	0.30 (3)	0.50 (5) 0.50 (5)
4.1pF(4R1)	0.30(3)	0.50(5)
4.2pF(4R2)	0.30(3)	0.50(5)
4.3pF(4R3)	0.30(3)	0.50(5)
4.4pF(4R4)	0.30(3)	0.50(5)
4.5pF(4R5)	0.30(3)	0.50(5)
4.6pF(4R6)	0.30 (3)	0.50(5)
4.7pF(4R7)	0.30(3)	0.50(5)
4.8pF(4R8)	0.30 (3)	0.50(5)
4.9pF(4R9)	0.30 (3)	0.50(5)
5.0pF(5R0)	0.30(3)	0.50 (5)
5.1pF(5R1)	0.30 (3)	0.50(5)
5.2pF(5R2)	0.30 (3)	0.50(5)
5.3pF(5R3)	0.30(3)	0.50(5)
5.4pF(5R4)	0.30(3)	0.50(5)
5.5pF(5R5)	0.30(3)	0.50 (5)
5.6pF(5R6)	0.30(3)	0.50(5)
5.7pF(5R7) 5.8pF(5R8)	0.30 (3) 0.30 (3)	0.50(5) 0.50(5)
5.9pF(5R9)	0.30(3)	0.50(5)
6.0pF(6R0)	0.30(3)	0.50(5)
6.1pF(6R1)	0.30(3)	0.50(5)
6.2pF(6R2)	0.30(3)	0.50(5)
6.3pF(6R3)	0.30 (3)	0.50(5)
6.4pF(6R4)	0.30 (3)	0.50(5)
6.5pF(6R5)	0.30 (3)	0.50(5)
6.6pF(6R6)	0.30 (3)	0.50(5)
6.7pF(6R7)	0.30 (3)	0.50 (5)
6.8pF(6R8)	0.30 (3)	0.50(5)
6.9pF(6R9)		0.50(5)
7.0pF(7R0)		0.50(5)
7.1pF(7R1)		0.50 (5)
7.2pF(7R2) 7.3pF(7R3)		0.50(5) 0.50(5)
7.4pF(7R4)		0.50(5)
7.5pF(7R5)		0.50(5)
7.6pF(7R6)		0.50(5)
7.7pF(7R7)		0.50(5)
7.8pF(7R8)		0.50(5)
7.9pF(7R9)		0.50(5)
8.0pF(8R0)		0.50(5)
8.1pF(8R1)		0.50(5)
8.2pF(8R2)		0.50(5)
8.3pF(8R3)		0.50(5)
8.4pF(8R4)		0.50(5)
8.5pF(8R5)		0.50 (5)
8.6pF(8R6)		0.50(5)

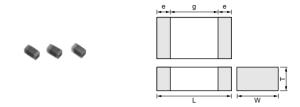
Continued from the preceding page

Part Number	GJM03	GJM15
L x W [EIA]	0.60x0.30 [0201]	1.00x0.50 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
Capacitance (Capacitance	part numbering code) and T (mm) Dimension (T Dime	nsion part numbering code)
8.7pF(8R7)		0.50(5)
8.8pF(8R8)		0.50(5)
8.9pF(8R9)		0.50(5)
9.0pF(9R0)		0.50(5)
9.1pF(9R1)		0.50(5)
9.2pF(9R2)		0.50(5)
9.3pF(9R3)		0.50(5)
9.4pF(9R4)		0.50(5)
9.5pF(9R5)		0.50(5)
9.6pF(9R6)		0.50(5)
9.7pF(9R7)		0.50(5)
9.8pF(9R8)		0.50(5)
9.9pF(9R9)		0.50(5)
10pF(100)		0.50(5)
12pF(120)		0.50(5)
15pF(150)		0.50(5)
18pF(180)		0.50(5)
20pF(200)		0.50(5)

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

Chip Monolithic Ceramic Capacitors


Tight Tolerance High-Q GJM Series

■ Features

- 1. Mobile Telecommunication and RF module, mainly
- 2. Quality improvement of telephone call, Low power Consumption, yield ratio improvement

■ Applications

VCO, PA, Mobile Telecommunication

Part Number	Dimensions (mm)					
Part Number	L	W	T	е	g min.	
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	

Part Number		GJM03	GJM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension	
0.20pF(R20)	M, N	0.30(3)	0.50(5)
0.30pF(R30)	K, M	0.30(3)	0.50 (5)
0.40pF(R40)	K, M	0.30(3)	0.50 (5)
0.50pF(R50)	K, M	0.30(3)	0.50 (5)
0.60pF(R60)	K, M	0.30(3)	0.50 (5)
0.70pF(R70)	K, M	0.30(3)	0.50 (5)
0.80pF(R80)	K, M	0.30(3)	0.50 (5)
0.90pF(R90)	K, M	0.30(3)	0.50 (5)
1.0pF(1R0)	K, M	0.30(3)	0.50 (5)
1.1pF(1R1)	K, M	0.30(3)	0.50 (5)
1.2pF(1R2)	K, M	0.30 (3)	0.50 (5)
1.3pF(1R3)	K, M	0.30 (3)	0.50(5)
1.4pF(1R4)	K, M	0.30 (3)	0.50(5)
1.5pF(1R5)	K, M	0.30 (3)	0.50 (5)
1.6pF(1R6)	K, M	0.30 (3)	0.50(5)
1.7pF(1R7)	K, M	0.30 (3)	0.50 (5)
1.8pF(1R8)	K, M	0.30(3)	0.50 (5)
1.9pF(1R9)	K, M	0.30 (3)	0.50 (5)
2.0pF(2R0)	G, J	0.30 (3)	0.50(5)
2.1pF(2R1)	G, J	0.30 (3)	0.50(5)
2.2pF(2R2)	G, J	0.30(3)	0.50 (5)
2.3pF(2R3)	G, J	0.30(3)	0.50 (5)
2.4pF(2R4)	G, J	0.30(3)	0.50 (5)
2.5pF(2R5)	G, J	0.30 (3)	0.50 (5)
2.6pF(2R6)	G, J	0.30(3)	0.50 (5)
2.7pF(2R7)	G, J	0.30 (3)	0.50 (5)
2.8pF(2R8)	G, J	0.30 (3)	0.50 (5)
2.9pF(2R9)	G, J	0.30(3)	0.50 (5)
3.0pF(3R0)	G, J	0.30(3)	0.50 (5)
3.1pF(3R1)	G, J	0.30(3)	0.50 (5)
3.2pF(3R2)	G, J	0.30(3)	0.50 (5)
3.3pF(3R3)	G, J	0.30(3)	0.50 (5)
3.4pF(3R4)	G, J	0.30(3)	0.50 (5)

Part Number		GJM03	GJM15		
x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]		
гс		ÇOĞ	COG		
		(5C)	(5C)		
Rated Volt.		25 (1E)	50 (1H)		
Capacitance, Ca	pacitance Toleran	ce and T Dimension			
3.5pF(3R5)	G, J	0.30(3)	0.50 (5)		
3.6pF(3R6)	G, J	0.30(3)	0.50(5)		
3.7pF(3R7)	G, J	0.30(3)	0.50 (5)		
3.8pF(3R8)	G, J	0.30(3)	0.50 (5)		
3.9pF(3R9)	G, J	0.30(3)	0.50(5)		
4.0pF(4R0)	G, J	0.30(3)	0.50(5)		
4.1pF(4R1)	G, J	0.30(3)	0.50(5)		
4.2pF(4R2)	G, J	0.30(3)	0.50(5)		
4.3pF(4R3)	G, J	0.30(3)	0.50(5)		
4.4pF(4R4)	G, J	0.30(3)	0.50(5)		
4.5pF(4R5)	G, J	0.30(3)	0.50(5)		
4.6pF(4R6)	G, J	0.30(3)	0.50(5)		
4.7pF(4R7)	G, J	0.30(3)	0.50(5)		
4.8pF(4R8)	G, J	0.30(3)	0.50(5)		
4.9pF(4R9)	G, J	0.30(3)	0.50(5)		
5.0pF(5R0)	F, G	0.30(3)	0.50(5)		
5.1pF(5R1)	F, G	0.30(3)	0.50(5)		
5.2pF(5R2)	F, G	0.30(3)	0.50(5)		
5.3pF(5R3)	F, G	0.30(3)	0.50(5)		
5.4pF(5R4)	F, G	0.30(3)	0.50(5)		
5.5pF(5R5)	F, G	0.30(3)	0.50(5)		
5.6pF(5R6)	F, G	0.30(3)	0.50(5)		
5.7pF(5R7)	F, G	0.30(3)	0.50(5)		
5.8pF(5R8)	F, G	0.30(3)	0.50(5)		
5.9pF(5R9)	F, G	0.30(3)	0.50(5)		
6.0pF(6R0)	F, G	0.30(3)	0.50(5)		
6.1pF(6R1)	F, G	0.30(3)	0.50(5)		
6.2pF(6R2)	F, G	0.30(3)	0.50(5)		
6.3pF(6R3)	F, G	0.30(3)	0.50(5)		
6.4pF(6R4)	F, G	0.30(3)	0.50(5)		
6.5pF(6R5)	F, G	0.30(3)	0.50(5)		
6.6pF(6R6)	F, G	0.30(3)	0.50(5)		
6.7pF(6R7)	F, G	0.30(3)	0.50(5)		
6.8pF(6R8)	F, G	0.30(3)	0.50(5)		
6.9pF(6R9)	F, G		0.50(5)		
7.0pF(7R0)	F, G		0.50(5)		
7.1pF(7R1)	F, G		0.50(5)		
7.2pF(7R2)	F, G		0.50(5)		
7.3pF(7R3)	F, G		0.50(5)		
7.4pF(7R4)	F, G		0.50(5)		
7.5pF(7R5)	F, G		0.50(5)		
7.6pF(7R6)	F, G		0.50(5)		
7.7pF(7R7)	F, G		0.50(5)		
7.8pF(7R8)	F, G		0.50(5)		
7.9pF(7R9)	F, G		0.50(5)		
8.0pF(8R0)	F, G		0.50(5)		
8.1pF(8R1)	F, G		0.50(5)		
8.2pF(8R2)	F, G		0.50(5)		
8.3pF(8R3)	F, G		0.50(5)		
8.4pF(8R4)	F, G		0.50(5)		
8.5pF(8R5) 8.6pF(8R6)	F, G F, G		0.50(5) 0.50(5)		

Continued from the preceding page.

Part Number		GJM03	GJM15
L x W [EIA]		0.60x0.30 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	e Tolerance and T Dimension	
8.7pF(8R7)	F, G		0.50(5)
8.8pF(8R8)	F, G		0.50 (5)
8.9pF(8R9)	F, G		0.50 (5)
9.0pF(9R0)	F, G		0.50 (5)
9.1pF(9R1)	F, G		0.50 (5)
9.2pF(9R2)	F, G		0.50 (5)
9.3pF(9R3)	F, G		0.50(5)
9.4pF(9R4)	F, G		0.50 (5)
9.5pF(9R5)	F, G		0.50 (5)
9.6pF(9R6)	F, G		0.50(5)
9.7pF(9R7)	F, G		0.50(5)
9.8pF(9R8)	F, G		0.50(5)
9.9pF(9R9)	F, G		0.50(5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

			Specifications		T											
No.	Ite	em	Temperature Compensating Type	-	Test Me	ethod										
1	Operating Temperati		−55 to +125°C	Reference Temperature : 25°C (2C, 3C, 4C : 20°C)												
2	2 Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage wh may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, $V^{\text{p-p}}$ or whichever is larger, should be maintained within the rate voltage range.		ge, V ^{P-P} or V ^{O-P} ,										
3	Appearar	nce	No defects or abnormalities	Visual inspection												
4	Dimensio	ons	Within the specified dimensions	Using calipers												
5	Dielectric	Strength	No defects or abnormalities	No failure should be is applied between the provided the charge/o	ne terminatio	ns for 1 to 5 se	econds,									
6	Insulation (I.R.)	Resistance	10,000M Ω min. or 500 Ω · F min. (Whichever is smaller)	The insulation resistate voltage not exceeding max. and within 2 min	g the rated v	roltage at 25℃										
7	Capacita	nce	Within the specified tolerance	The capacitance/Q s			at the									
			0. 40.100	frequency and voltag	e snown in t											
8	Q		30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	Frequency Voltage		1±0.1MHz										
			C : Normal Superiumos (pr.)			0.5 to 5Vrm	IS									
	Capacitance Change Temperature Coefficient		Within the specified tolerance (Table A)	The capacitance change should be measured after 5 mir each specified temperature stage.		after 5 min. at										
			Within the specified tolerance (Table A)	Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference.												
9	Capacitance Temperature Characteristics	Capacitance Drift				When cycling the temperature sequentially from step 1 through 5, (5C: +25 to 125°C: other temp. coeffs.: +20 to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3.										
															Within ±0.2% or ±0.05pF (Whichever is larger.)	Step
			, , , , , , , , , , , , , , , , , , ,	1		ference Temp.	•									
				2		-55±3										
				3 4	Re	ference Temp.	. ±2									
				5	Re	125±3 ference Temp.	+2									
				Solder the capacitor to Fig. 1 using a eutectic with the test jig for 10 with an iron or using the with care so that the sas heat shock.	o the test jig c solder. The ±1 sec. The he reflow me	(glass epoxy bon apply a 5N* for soldering shout thou and shout thou and shout the soldering shout the sol	oard) shown in orce in parallel Id be done either Id be conducted									
10		Ihesive Strength Termination No removal of the terminations or other defect shows the strength of the termination of the termi				Solo Bak copp	der resist ed electrode or per foil									
				Type GJM03	0.3	0.9	0.3									
				GJM15	0.4	1.5	0.5									
					(in mm)											

N	ued from the		
I XII Contin	uea trom tne	preceaina	page

\mathbb{L}	Continued from the preceding page.								
NI-	Item		Specifications	Total Madhad					
No.	ILE	em	Temperature Compensating Type	Test Method					
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the					
11	Vibration Resistance			 same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). 					
			No cracking or marking defects should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the					
12	Deflection	n	Type a b c GJM03 0.3 0.9 0.3 GJM15 0.4 1.5 0.5 (in mm)	soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Flexure: ≤1 Capacitance meter 45 45 (in mm) Fig. 3					
13	Solderability of Termination 75% of the terminations are to be soldered ever continuously.		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.					
			The measured and observed characteristics should satisfy the specifications in the following table.						
		Appearance No marking defects		_					
14	Resistance to Soldering	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu					
•	Heat	Q	Q≥400+20C C : Nominal Capacitance (pF)	colder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.					
		I.R.	More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)						
		Dielectric Strength	No failure						
			The measured and observed characteristics should satisfy the specifications in the following table.	Fix the capacitor to the supporting jig in the same manner and					
		Appearance	No marking defects	under the same conditions as (10). Perform the five cycles					
4-	Temperature	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.					
15	Cycle	Q	Q≥400+20C C : Nominal Capacitance (pF)	Step 1 2 3 4 Temp. (°C) Min. Operating Room Temp. +0 Temp. Temp. Temp. Temp.					
		I.R.	More than $10,000 \text{M}\Omega$ or $500 \Omega \cdot \text{F}$ (Whichever is smaller)	Time (min.) 30±3 2 to 3 30±3 2 to 3					
		Dielectric Strength	No failure	1 mile (11mile)					
			The measured and observed characteristics should satisfy the specifications in the following table.						
		Appearance	No marking defects						
16	Humidity, Steady	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	Let the capacitor sit at $40\pm2^{\circ}$ C and 90 to 95% humidity for 500±12 hours.					
	State	Q	10pF and over, 30pF and below : Q≥275+ ½ C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure.					
		I.R.	More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)						
_			·						

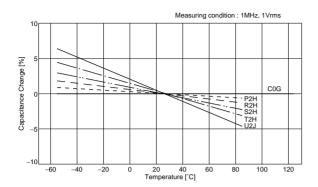
Continued from the preceding page.

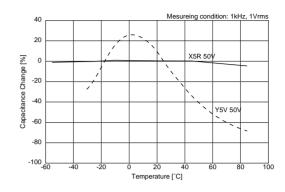
	Continued ii			
No.	No. Item		Specifications	Test Method
110.			Temperature Compensating Type	rest wethou
			The measured and observed characteristics should satisfy the specifications in the following table.	
		Appearance	No marking defects	
17	Humidity	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours.
17	Load	Q	30pF and below : Q≥100+ ½ C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than $500 \text{M}\Omega$ or $25 \Omega \cdot \text{F}$ (Whichever is smaller)	
		Dielectric Strength	No failure	
			The measured and observed characteristics should satisfy the specifications in the following table.	
		Appearance	No marking defects	
	High	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours
18	Temperature Load	Q	10pF and over, 30pF and below : Q≥275+ ½ C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	(temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than 1,000M Ω or 50 Ω · F (Whichever is smaller)	
		Dielectric Strength	No failure	
19	ESR		0.5pF≦C≦1pF : 350mΩ below 1pF <c≦5pf 300mω="" :="" below<br="">5pF<c≦10pf 250mω="" :="" below<="" td=""><td>The ESR should be measured at room Temperature. and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.</td></c≦10pf></c≦5pf>	The ESR should be measured at room Temperature. and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.
	LSK		10pF <c≦20pf 400mω="" :="" below<="" td=""><td>The ESR should be measured at room Temperature. and frequency 500±50MHz with the equivalent of HP8753B.</td></c≦20pf>	The ESR should be measured at room Temperature. and frequency 500±50MHz with the equivalent of HP8753B.

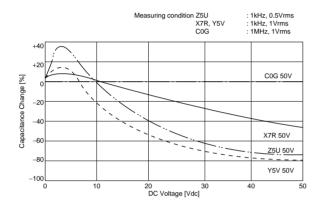
Table A

(1)										
	T O		Cap	(%)						
Char. Code	Temp. Coeff. (ppm/°C) *1	− 55℃		-30℃		−10 ℃				
	(ββιίί/ C) - 1	Max.	Min.	Max.	Min.	Max.	Min.			
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11			

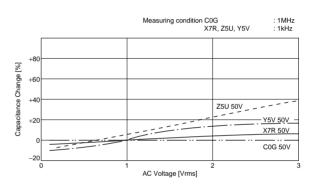
^{*1 :} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

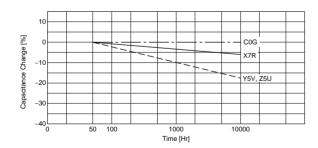

<u>(-)</u>		Capacitance Change from 20°C Value (%)						
Char.	Nominal Values (ppm/°C) *2	−55℃		–25℃		-10℃		
		Max.	Min.	Max.	Min.	Max.	Min.	
2C	0±60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
3C	0±120	0.37	-0.90	0.82	-0.54	0.55	-0.36	
4C	0±250	0.56	-0.88	1.54	-1.13	1.02	-0.75	

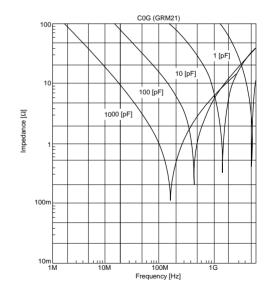

^{*2 :} Nominal values denote the temperature coefficient within a range of 20 to 125°C.


GRM Series Data

■ Capacitance-Temperature Characteristics

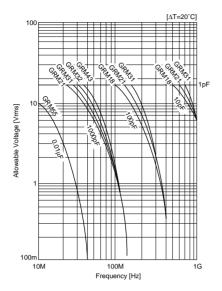


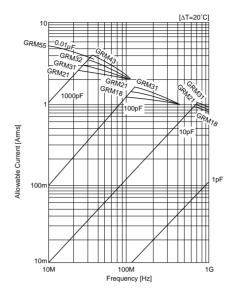

■ Capacitance-DC Voltage Characteristics


■ Capacitance-AC Voltage Characteristics

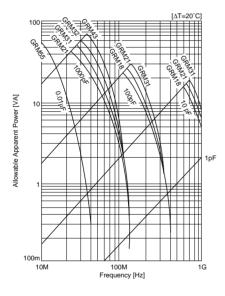
■ Capacitance Change-Aging

■ Impedance-Frequency Characteristics




GRM Series Data

Continued from the preceding page.


■ Allowable Voltage-Frequency

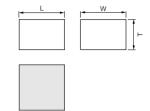
■ Allowable Current-Frequency

■ Allowable Apparent Power

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. 05.12.14

Chip Monolithic Ceramic Capacitors

Microchips GMA Series


■ Features

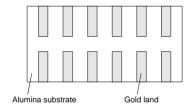
- 1. Better micro wave characteristics
- 2. Suitable for by-passing
- 3. High density mounting

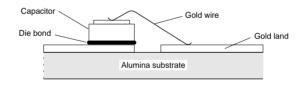
■ Applications

- 1. Optical device for telecommunication
- 2. IC, IC packaging built-in
- 3. Measuring equipment

Part Number	Dimensions (mm)					
Part Number	L	W	T			
GMA05X	0.5 ±0.05	0.5 ±0.05	0.35 ±0.05			
GMA085	0.8 ±0.05	0.8 ±0.05	0.5 ±0.1			

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GMA05XR72A101MD01	X7R (EIA)	100	100pF ±20%	0.5	0.5	0.35
GMA05XR72A151MD01	X7R (EIA)	100	150pF ±20%	0.5	0.5	0.35
GMA05XR72A221MD01	X7R (EIA)	100	220pF ±20%	0.5	0.5	0.35
GMA085R72A331MD01	X7R (EIA)	100	330pF ±20%	0.8	0.8	0.5
GMA085R72A471MD01	X7R (EIA)	100	470pF ±20%	0.8	0.8	0.5
GMA085R72A681MD01	X7R (EIA)	100	680pF ±20%	0.8	0.8	0.5
GMA085R72A102MD01	X7R (EIA)	100	1000pF ±20%	0.8	0.8	0.5
GMA05XF52A102ZD01	Y5V (EIA)	100	1000pF +80/-20%	0.5	0.5	0.35
GMA085F52A103ZD01	Y5V (EIA)	100	10000pF +80/-20%	0.8	0.8	0.5
GMA05XR71H331MD01	X7R (EIA)	50	330pF ±20%	0.5	0.5	0.35
GMA05XR71H471MD01	X7R (EIA)	50	470pF ±20%	0.5	0.5	0.35
GMA05XR71C681MD01	X7R (EIA)	16	680pF ±20%	0.5	0.5	0.35
GMA05XR71C102MD01	X7R (EIA)	16	1000pF ±20%	0.5	0.5	0.35
GMA085R71C102MD01	X7R (EIA)	16	1000pF ±20%	0.8	0.8	0.5
GMA05XR71C152MD01	X7R (EIA)	16	1500pF ±20%	0.5	0.5	0.35
GMA085R71C152MD01	X7R (EIA)	16	1500pF ±20%	0.8	0.8	0.5
GMA05XR71C222MD01	X7R (EIA)	16	2200pF ±20%	0.5	0.5	0.35
GMA085R71C222MD01	X7R (EIA)	16	2200pF ±20%	0.8	0.8	0.5
GMA085R71C332MD01	X7R (EIA)	16	3300pF ±20%	0.8	0.8	0.5
GMA085R71C472MD01	X7R (EIA)	16	4700pF ±20%	0.8	0.8	0.5
GMA085R71C682MD01	X7R (EIA)	16	6800pF ±20%	0.8	0.8	0.5
GMA085R71C103MD01	X7R (EIA)	16	10000pF ±20%	0.8	0.8	0.5
GMA05XF51C472ZD01	Y5V (EIA)	16	4700pF +80/-20%	0.5	0.5	0.35
GMA05XF51C682ZD01	Y5V (EIA)	16	6800pF +80/-20%	0.5	0.5	0.35
GMA05XF51C103ZD01	Y5V (EIA)	16	10000pF +80/-20%	0.5	0.5	0.35
GMA085F51C473ZD01	Y5V (EIA)	16	47000pF +80/-20%	0.8	0.8	0.5
GMA05XF51A153ZD01	Y5V (EIA)	10	15000pF +80/-20%	0.5	0.5	0.35
GMA085F51A104ZD01	Y5V (EIA)	10	0.10μF +80/-20%	0.8	0.8	0.5



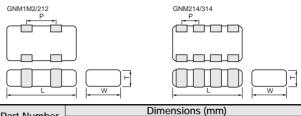

No.	Ite	em	Specifications				Test Method				
1	Operating Temperat Range	,	R7 : −55 to +125°C F5 : −30 to +85°C	R	eference	Tem	perature:25℃				
2	Rated Vo	ltage	See the previous pages.	m W	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^o whichever is larger, should be maintained within the rated volta range.			V ^{P-P} or V ^{O-P} ,			
3	Appearar	nce	No defects or abnormality	Vi	isual insp	ectio	n				
4	Dimensio	ns	See the previous pages.	Vi	sual insp	ectio	n				
5	Dielectric	Strength	No defects or abnormality	ra se	ted volta	ge is	d be observed when a vapplied between the bound the charge/discharge	oth terminatio	ns for 1 to 5		
6	Insulation	Resistance	10,000M Ω min.	V	oltage not	exc	esistance should be me eeding the rated voltage nd within 2 minutes of cl	e at normal te			
7	Capacita	nce	Within the specified tolerance				e/D.F. should be measu the frequency and volta				
8	Dissipatio (D.F.)	n Factor	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)		Freque			1kHz 2Vrms			
				ea •1 R sh In m	ach speci The range eference nown in the case of a easured a	fied tes of Temne tale apply	e change should be me temp. stage. capacitance change co perature value over the ble should be within the ving voltage, the capacit 1 more min. with applyi each temp. stage.	mpared with temperature specified ra tance change ing voltage ir	the ranges nges.* e should be		
	Capacitance Temperature Characteristics	ature No bias	perature No bias		D7 W/W : 1/ 4F0/ / 7F1 140F00		Step 1	_	Temperature (°C) eference Tempereture±		Voltage (V)
9				R7 : Within +/–15% (–55 to +125°C) F5 : Within +22/–82% (–30 to +85°C)		2	110	-55±3 (for R7) -30±3 (for F5)		o bias	
							3	Re	eference Tempereture±		
						4		125±3 (for R7) 85±3 (for F5)			
						P th	erform a l en let sit	heat for 4	ement for high dielectric treatment at 150 +0/-1 8±4 hours at room tem ial measurement.	10°C for one	
10	Mechanical Strength	Bond Strength	Pull force : 3.0g min.	M Ai	ount the ou- u-Sn (80/2	capad 20) a	Method 2011 Condition I citor on a gold metallized nd bond a 20μm (0.0008 all using an ultrasonic w	d alumina sub 8 inch) gold w	rire to the		
		Die Shear Strength	Die Shear force : 200g min.	М	ount the	сара	Method 2019 icitor on a gold metallize 20). Apply the force par				
		Appearance	No defects or abnormality								
	Vibration	Capacitance	Within the specified tolerance				y from 10 to 55Hz then tude : 1.5 mm (0.06 inc				
11	Resistance	D.F.	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)	A	pply this r	motic	on for a period of 2 hour lirections (total 6 hours)	rs in each of			
		Appearance	No marked defect		•		hould be set for 48±4 h				
		Capacitance Change	R7 : Within ±7.5% F5 : Within ±20%	th	en meası	ure fo	er one hour heat of trea or the initial measureme ig in the same manner	ent. Fix the ca	apacitor to		
12	Temperature Cycle	D.F.	R7 : 0.035 max. F5 : 0.09 max. (for 16V) 0.125 max. (for 10V)	co te	onditions on mperatur	as (1 es a	1) and conduct the five nd time shown in the following temperature, then	cycles according table.	rding to the		
		I.R.	10,000MΩ min.	٦	Step		1 2	3	4		
		Dielectric Strength	No failure		Temp. (%	⁵⁾ 1	. "	Max. Operating Temp. +3/-0 30±3	1		
			Casingui			· ····ic (IIII	/	2100	30±0		

Continued from the preceding page.

	Sommuea from the preceding page.								
No	. Ite	em	Specifications	Test Method					
		Appearance	No marked defect						
		Capacitance Change	R7 : Within ±12.5% F5 : Within ±30%						
13	Humidity (Steady State)	D.F.	R7 : 0.05 max. F5 : 0.125 max. (for 16V) 0.15 max. (for 10V)	Set the capacitor for 500±12 hours at 40±20℃, in 90 to 95% humidity. Take it out and set it for 48±4 hours at room temperature, then measure.					
		I.R.	1,000M Ω min.						
		Dielectric Strength	No failure						
		Appearance	No marked defect						
		Capacitance Change	R7 : Within ±12.5% F5 : Within +30/—40%	Apply the rated voltage for 500±12 hours at 40±2°C, in 90 to 95% humidity and set it for 48±4 hours at room temperature, then measure. The charge/discharge current is					
14	Humidity Load	D.F.	R7 : 0.05 max. F5 : 0.125 max. (for 16V) 0.15 max. (for 10V)	less than 50mA. • Initial measurement for F1/F5					
		I.R.	500MΩ min.	Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 48±4 hours at room temperature. Perform the					
		Dielectric Strength	No failure	initial measurement.					
		Appearance	No marked defect						
		Capacitance Change	R7 : Within ±12.5% F5 : Within +30/—40%	A voltage treatment should be given to the capacitor, in which a DC voltage of 200% the rated voltage is applied for one hour at the maximum operating temperature ±3°C then it should be set					
15	High Temperature Load	D.F.	R7 : 0.05 max. F5 : 0.125 max. (for 16V) 0.15 max. (for 10V)	for 48±4 hours at room temperature and the initial measurement should be conducted. Then apply the above mentioned voltage continuously for					
		I.R.	1,000M Ω min.	1000±12 hours at the same temperature, remove it from the bath, and set it for 48±4 hours at room temperature, then					
		Dielectric Strength	No failure	measure. The charge/discharge current is less than 50mA.					

Mounting for testing: The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No.11 to 15 are performed.

Chip Monolithic Ceramic Capacitors


Capacitor Arrays GNM Series

■ Features

- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

■ Applications

General electronic equipment

Part Number	Dimensions (mm)							
Part Number	L W		T	P				
GNM1M2	1.37 ±0.15	1.0 ±0.15	0.6 ±0.1	0.64 +0.05				
GINIVITIVIZ	1.37 ±0.13	1.0 ±0.13	0.8 +0/-0.15	0.04 ±0.05				
GNM212	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1	1.0 ±0.1				
GNM214	2.0 ±0.15	1.25 ±0.15	0.6 ±0.1	0.5 ±0.05				
GNM314	3.2 ±0.15	1.6 ±0.15	0.8 ±0.1	0.8 ±0.1				
GINIVIS 14	J.Z ±0.13	1.0 ±0.15	1.0 ±0.1					

Temperature Compensating Type

Part Number		GNM1M	GNM21	GN	M31
LxW		1.37x1.0	2.0x1.25	3.22	x1.6
тс		C0G (5C)	C0G (5C)		0G C)
Rated Volt.		50 (1H)	50 (1H)	100 (2A)	50 (1H)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension			
10pF(100)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
15pF(150)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
22pF(220)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
27pF(270)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
33pF(330)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
39pF(390)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
47pF(470)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
68pF(680)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
100pF(101)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
150pF(151)	K	0.6(2)	0.6(4)	0.8(4)	0.8(4)
220pF(221)	K	0.6(2)	0.6(4)		0.8(4)
270pF(271)	K				0.8(4)
330pF(331)	K				0.8(4)

The part numbering code is shown in each (). The (4) code in T (mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM1M Series

Part Number		GNM1M								
LxW			1.37x1.00							
тс		X5R (R6)			X7R (R7)					
Rated Volt.		16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)			
Capacitance, Ca	pacitanc	e Tolerance and T Di	mension				'			
1000pF(102)	K, M				0.6(2)					
2200pF(222)	K, M					0.6(2)				
4700pF(472)	K, M					0.6(2)				
10000pF(103)	K, M					0.6(2)				
22000pF(223)	K, M						0.6(2)			

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from	the preced	ding page.							
Part Number				GNI	M1M				
L x W			1.37x1.00						
тс		тс			X5R (R6)		X7R (R7)		
Rated Volt.		16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)		
Capacitance, Ca	pacitano	e Tolerance and T D	imension	1	1		ı		
47000pF(473)	K, M						0.6(2)		
0.10μF(104)	K, M		0.8(2)						
1.0uF(105)	K. M	0.8(2)	0.8(2)	0.8(2)					

The part numbering code is shown in each (). The (2) code in T (mm) means number of elements (two).

High Dielectric Constant Type GNM21 Series

Part Number				GNM21		'			
LxW			2.0x1.25						
тс		XE (R	5R (6)	X7R (R7)					
Rated Volt.		16 (1C)	10 (1A)	50 (1H)	50 (1H) 25 16 (1C)				
Capacitance, Ca	pacitano	e Tolerance and T Dime	nsion						
1000pF(102)	K, M			0.6(4)					
2200pF(222)	K, M				0.6(4)				
4700pF(472)	K, M				0.6(4)				
10000pF(103)	K, M				0.6(4)				
22000pF(223)	K, M					0.85(4)			
47000pF(473)	K, M					0.85(4)			
0.10μF(104)	K, M					0.85(4)			
0.47μF(474)	K, M	0.85(2)							
1.0μF(105)	K, M	0.85(2)	0.85(4)						
2.2μF(225)	K, M		0.85(2)						

The part numbering code is shown in each (). The (2) code in T (mm) means number of elements (two).

High Dielectric Constant Type GNM31 Series

Part Number		GNM31						
LxW			3.2x1.6					
тс			X7R (R7)		X5R (R6)			
Rated Volt.		100 (2A)			10 (1A)			
Capacitance, Ca	pacitano	e Tolerance and T Dimension						
220pF(221)	K, M	0.8(4)						
330pF(331)	K, M	0.8(4)						
470pF(471)	K, M	0.8(4)	0.8(4)					
680pF(681)	K, M	0.8(4)	0.8(4)					
1000pF(102)	K, M	0.8(4)	0.8(4)					
1500pF(152)	K, M	0.8(4)	0.8(4)					
2200pF(222)	K, M	0.8(4)	0.8(4)					
3300pF(332)	K, M	0.8(4)	0.8(4)					
4700pF(472)	K, M	0.8(4)	0.8(4)					
6800pF(682)	K, M		0.8(4)					
10000pF(103)	K, M		0.8(4)					

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specificaion and Test Methods (2) about 1.0μF products.

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specificaion and Test Methods (2) about X5R, 10V products.

Continued from the preceding page.

Part Number			GNM31						
L x W		3.2x1.6							
тс			X5R (R6)						
Rated Volt.		100 (2A)	50 (1H)	16 (1C)	10 (1A)				
Capacitance, Capacitance Tolerance and T Dimension									
15000pF(153)	K, M		0.8(4)						
22000pF(223)	K, M			0.8(4)					
33000pF(333)	K, M			0.8(4)					
47000pF(473)	K, M			1.0(4)					
68000pF(683)	K, M			1.0(4)					
0.10μF(104)	K, M			1.0(4)					
1.0μF(105)	K, M				0.85(4)				

The part numbering code is shown in each (). The (4) code in T (mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

GNM Series Specifications and Test Methods (1)

				Specifications			
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method		
1	Operating Tempera Range	•	5C : -55 to +125°C	R7 : -55 to +125°C R6 : -30 to +85°C			
2	Rated Vo	ıltage	See the previous page	ges.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated voltage range.		
3	Appearar	nce	No defects or abnorr	malities	Visual inspection		
4	Dimensio	ons	Within the specified	dimensions	Using calipers		
5 Dielectric Strength No defects or abnormalities (5C) or 250% of the rated vol			No failure should be observed when 300% of the rated voltage (5C) or 250% of the rated voltage (R7) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.				
6	Insulation Resistant		More than 10,000MΩ (Whichever is smalle		The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.		
7	Capacitance Within the specified tolerance			tolerance	The capacitance/Q/D.F. should be measured at 25°C at the		
0	Q/ Dissipation Factor (D.F.)		30pF min. : Q≥1000 30pF max. : Q≥400+20C	Char. 25V min. 16V 10V 6.3V Data Roll 0.025 0.035 0.035 0.05	frequency and voltage shown in the table. Char. 5C R7		
8			C : Nominal Capacitance (pF)	R7, R6 max.	Frequency 1±0.1MHz 1±0.1kHz Voltage 0.5 to 5Vrms 1.0±0.2Vrms		
	Capacitance Change		Within the specified tolerance (Table A) Within the specified tolerance	Char. Temp. Range Reference Temp. Change R7 -55°C to +125°C 25°C Within ±15% R6 -55°C to +85°C 25°C Within ±15%	The capacitance change should be measured after 5 min. at each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the		
9	Capacitance Temperature Characteristics	Coefficent	(Table A)		steps 1, 3 and 5 by the cap. value in step 3. Step Temperature (°C)		
		Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.)		1 25±2 2 -55±3 (for 5C/R7), -30±3 (for F5) 3 25±2 4 125±3 (for 5C/R7), 85±3 (for F5) 5 20±2 (2) High Dielectric Constant Type The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges.		
10	O Adhesive Strength of Termination		GNM(rminations or other defect should occur. GNM 2 GNM 2 Solder resist Copper foil	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Type a b c d GNM1M2 0.5 1.6 0.32 0.32 GNM212 0.4 1.8 0.15 0.5 GNM214 0.6 2.0 0.25 0.25 GNM314 0.8 2.5 0.4 0.4 (in mm)		
					Fig. 1		

GNM Series Specifications and Test Methods (1)

Continued from the preceding page.

7	Continued fr	om the prec	eding page.		
	. Item			Specifications	
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
		Appearance	No defects or abnorr	malities	Solder the capacitor to the test jig (glass epoxy board) in the
		Capacitance	Within the specified	tolerance	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion
11	Vibration Resistance	Q/D.F. 30pF max. : Q≥400+20C Char. 25V min. 16V 10V 6.3V 10V 6.3V 10V 10V 10V 10V 10V 10V 10V 10V 10V 10		R7 R6 0.025 0.035 0.035 0.05	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).
			No cracking or marki	ing defects should occur.	Solder the capacitor on the test jig (glass epoxy board) shown
			•GNM□□4	•GNM□□2	in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3 for 5±1 sec.
			5.0 100	5.0 100	The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec.
12	Deflection	n	Type a b c d GNM1M2 2.0±0.05 0.5±0.05 0.32±0.05 0.32±0.05 GNM212 2.0±0.05 0.6±0.05 0.5±0.05 0.5±0.05 GNM214 2.0±0.05 0.7±0.05 0.3±0.05 0.2±0.05 GNM314 2.5±0.05 0.8±0.05 0.4±0.05 0.4±0.05 (in mm)		Pressurize R230 Flexure : ≤1 Capacitance meter 45 Fig. 3
				Fig. 2	
13	Solderab Terminati		75% of the termination continuously.	ons are to be soldered evenly and	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.
	Resistance Soldering		The measured and conspecifications in the	bserved characteristics should satisfy the following table.	
		Appearance	No marking defects		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7, R6 : Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours, then procure
14		Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	Char. 25V min. 16V 10V 6.3V R7, R6 0.025 max. 0.035 max. 0.035 max. 0.05 max.	temperature for 24±2 hours, then measure. Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.
		I.R.	More than 10,000Mg	Ω or 500Ω · F (Whichever is smaller)	
	Dielectric Strength		No failure		

Continued on the following page.

GNM Series Specifications and Test Methods (1)

				Specifications							
ο.	Ite	Item Temp Compen		Hiç	gh Diele	ctric Type		Test Method			
	Tempera Cycle	ture	The measured and o		served characteristics should satisfy the llowing table.			tor to the supp	orting jig	in the same ma	anner an
		Appearance	No marking defects							erform the five	-
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7, R6 : Within ±7	7.5%		or 48±4 hours temperature, t	ble. Let sit for 24±2 hours (temperature compensating type) 48±4 hours (high dielectric constant type) at room mperature, then measure.			
5			30pF min. : Q≧1000				Step	Min.	2	Max.	4
		Q/D.F.	30pF max. : Q≥400+20C	Char. 25V min.	16V 0.035	10V 6.3V 0.035 0.05	Temp. (°C)	Operating Temp. +0/–3	Room Temp.	Operating Temp. +3/–0	Room Temp.
			C:Nominal Capacitance (pF)	IR/Rh		max. max	- -	30±3 rement for high	2 to 3 h dielectr	30±3	2 to 3
		I.R.	More than 10,000Mg	or 5000 . F (Which	ever is	smaller)				10°C for one h	our and
		Dielectric	Wore than 10,000Ws	2 01 30022 - 1 (VVIIICI	ievei is	Sirialier)		then let sit for 24±2 hours at room temperature. Perform the initial measurement.			
		Strength	No failure						-		
	Humidity State	Steady	The measured and compecifications in the		tics sho	uld satisfy the					
		Appearance	No marking defects								
6		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	R7, R6 : Within ±1	2.5%						
			30pF and over : Q≧350 10pF and over,	Char 25V min	141/	10//// 2//	hours. Remove and I	Sit the capacitor at 40±2°C an hours. Remove and let sit for 24±2 h measure.			
		Q/D.F.	30pF and below: Q≧275+5C/2	Char. 25V min. 0.05	16V 0.05	10V/6.3V 0.05	measure.				
		Q/D.1 .	10pF and below : Q≧200+10C	R7, R6 max.	max.	max.	_				
			C : Nominal Capacitance (pF)								
		I.R.	More than 1,000MΩ	or 50Ω · F (Whichev	er is sm	naller)					
		Dielectric Strength	No failure								
	Humidity	Load	The measured and of specifications in the		tics sho	uld satisfy the					
		Appearance	No marking defects	T							
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R7, R6 : Within ±1	2.5%			Apply the rated voltage at 40±2°C and 90 to 95%		id 90 to 95% hu	ımidity fo
17		Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3	Char. 25V min. R7, R6 0.05 max.	16V 0.05 max.	10V/6.3V 0.05 max.	500±12 hours Remove and I muasure. The charge/di	et sit for 24±2		room tempratu than 50mA.	re, then
			C : Nominal Capacitance (pF)		•		_				
		I.R.	More than 500MΩ or	r 25Ω · F (Whichever	r is smal	ller)					
		Dielectric Strength	No failure								

Continued on the following page.

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. 05.12.14

GNM Series Specifications and Test Methods (1)

\overline{A}	Continued fr	om the prec	eding page.		
				Specifications	
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
	High Temperature Load		The measured and o specifications in the	bserved characteristics should satisfy the following table.	
		Appearance	No marking defects		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R7, R6 : Within ±12.5%	Apply 200% of the rated voltage for 1000±12 hours at the maximun operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure.
18		Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V/6.3V R7, R6 0.04 max. 0.05 max. 0.05 max.	The charge/discharge current is less than 50mA. • Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximun operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature.Perform initial measurement.
		I.R.	More than 1,000MΩ	or $50\Omega \cdot F$ (Whichever is smaller)	

Table A

	Nominal Values (ppm/°C) Note 1	Capacitance Change from 25℃ (%)						
Char.		−55℃		−30°C		−10 ℃		
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

Note 1: Nominal values denote the temperature coefficient within a range of 25 to 125°C.

GNM Series Specifications and Test Methods (2)

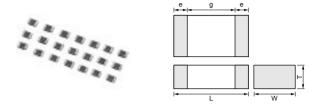
No.	Ite	em	Specifications	Test Method			
1	Operating Temperatu	ure Range	R6 : -55°C to +85°C				
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, VP-P or VO-P, whichever is larger, should be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	ns	Within the specified dimension	Using calipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation	Resistance	50Ω · F min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 1 minutes of charging.			
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table.			
8	Dissipation (D.F.)	on Factor	0.1 max.	Capacitance Frequency Voltage			
	(5.1.)			R6			
9	Capacitar Temperat Character	ure	Char. Temp. Range Reference Temp. Cap. Change R6 -55 to +85°C 25°C Within ±15%	The capacitance change should be measured affter 5 min.at each specified temperature stage. Step Temperature (°C) 1 25±2 2 -55±3 3 25±2 4 85±3 5 25±2 The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.			
10	Adhesive Strength of Termination		No removal of the terminations or other defects should occur b a Solder resist Copper foil Fig. 1	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Type a b c d GNM1M2 0.5 1.6 0.32 0.32 GNM212 0.4 1.8 0.15 0.5 (in mm)			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in			
		Capacitance	Within the specified tolerance	the same manner and under the same conditions as (10).			
11	Vibration	D.F.	0.1 max.	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).			

GNM Series Specifications and Test Methods (2)

	Continued fr	•	Specifications	Toot Mathod
12			No cracking or marking defects shal occur. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure : ≤1 Capacitance meter 45 45 Fig. 3	Test Method Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Thickness: 0.8mm Type a b c d GNM1M2 2.0±0.5 0.5±0.05 0.32±0.050.32±0.05 GNM212 2.0±0.05 0.6±0.05 0.5±0.05 0.5±0.05 (in mm)
13	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Fig. 2 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse
	Resistance	Capacitance Change	R6: Within ±7.5%	the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds.
14	to Soldering	D.F.	0.1 max.	Let sit at room temperature for 24±2 hours, then measure. • Initial measurement
	Heat	I.R.	$50Ω \cdot F$ min.	Perform a heat treatment at 150 +0/-10°C for one hour and
		Dielectric Strength	No failure	then let sit for 24±2 hours at room temperature. Perform the initial measurement.
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10).
		Capacitance Change	R6: Within ±12.5%	Perform the five cycles according to the four heat treatments listed in the following table.
		D.F.	0.1 max.	Let sit for 24±2 hours at room temperature, then measure.
15	Temperature	I.R.	$50\Omega \cdot F$ min.	Step 1 2 3 4 Tomp (%) Min. Operating Room Max. Operating Room
13	Cycle			Temp. Temp. Temp. Temp. Temp.
		Dielectric Strength	No failure	Time (min.) 30±3 2 to 3 30±3 2 to 3 • Initial measurement Perform a heat treatment at 150 +0/-10 °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.
		Appearance	No marking defects	Apply the rated voltage at 40±2°C and 90 to 95% humidity for
	High Temperature	Capacitance Change	R6: Within ±12.5%	500±12 hours. The charge/discharge currentis less than 50mA. • Initial measurement Perform a heat treatment at 150 +0/-10°C for one hour
16	High .	D.F.	0.2 max.	and then let sit for 24±2 hours at room temperature.
	Humidity (Steady)	I.R.	12.5Ω · F min.	Perform the initial measurement. • Measurement after test
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dielectric Strength	No failure	Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.
		Appearance	No marking defects	Apply 125% of the rated voltage for 1000±12 hours at the
		Capacitance Change	R6: Within ±12.5%	maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		D.F.	0.2 max.	Initial measurement
17	Durability	I.R.	$25Ω \cdot F$ min.	Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature.
		Dielectric Strength	No failure	Perform the initial measurement. • Measurement after test Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.

Chip Monolithic Ceramic Capacitors

for Ultrasonic Sensors GRM Series


■ Features

- 1. Proper to compensate for ultrasonic sensor
- 2. Small chip size and high cap. value

■ Applications

Ultrasonic sensor

(Back sonar, Corner sonar and etc.)

Part Number		Dimensions (mm)								
Part Number	L	W	T	e g min.						
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7					

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM2199E2A102KD42	ZLM (Murata)	100	1000 ±10%	2.0	1.25	0.85
GRM2199E2A152KD42	ZLM (Murata)	100	1500 ±10%	2.0	1.25	0.85

No.	Ite	em	Specifications		Test Method				
1	Operating Temperat		−25 to +85°C	Reference Tempera	ature: 20°C				
2	Rated Vo	Itage	See the previous pages.	may be applied con When AC voltage is	s defined as the maximum voltage which titinuously to the capacitor. s superimposed on DC voltage, V ^{p.p} or V ^{0.p} , should be maintained within the rated volt-				
3	Appearar	ice	No defects or abnormalities	Visual inspection					
4	Dimensio	ns	Within the specified dimensions	Using calipers					
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.					
6	Insulation (I.R.)	Resistance	More than 10,000MΩ		stance should be measured with a DC volt- the rated voltage at 20°C and 75%RH max. ss of charging.				
7	Capacita	nce	Within the specified tolerance	The conscitones/D	F. should be measured at 20°C with				
8	Dissipatio (D.F.)	n Factor	0.01 max.		ncy and 1±0.2Vrms in voltage.				
9	Capacitar Temperat		Within −4,700 ± 1.000 ppm/°C (at −25 to ±20°C) Within −4,700 ± 5.000 ppm/°C (at ±20 to ±85°C)	capacitance measu When cycling the te 5, the capacitance s the temperature coe	ange should be measured after 5 min. at				
	Character	istics	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	1	20±2				
				2	-25±3				
				3	20±2				
				4	85±3				
				5	20±2				
10	Adhesive of Termin		No removal of the terminations or other defect should occur.	Fig.1 using a eutect direction of the arro The soldering shoul reflow method and soldering is uniform	r to the test jig (glass epoxy board) shown in tic solder. Then apply 10N force in the w. Id be done either with an iron or using the should be conducted with care so that the hand free of defects such as heat shock. Solder resist Baked electrode or copper foil a b c 1.2 4.0 1.65 (in mm) Fig. 1				
		Appearance	No defects or abnormalities	Solder the canacito	r to the test jig (glass epoxy board) in the				
		Capacitance	Within the specified tolerance		under the same conditions as (10).				
11	Vibration Resistance	D.F.	0.01 max.	having a total ampli uniformly between t frequency range, fro be traversed in app	Id be subjected to a simple harmonic motion itude of 1.5mm, the frequency being varied the approximate limits of 10 and 55Hz. The om 10 to 55Hz and return to 10Hz, should roximately 1 minute. This motion should be of 2 hours in each of 3 mutually perpendicl of 6 hours).				

sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

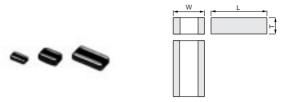
Specifications and Test Methods

Continued from the preceding page Specifications No Item Test Method Solder the capacitor to the test jig (glass epoxy boards) shown No cracking or marking defects should occur. in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 50 Pressurizing speed: 1.0mm/sec _Pressurize Deflection 12 R230 t: 1.6mm 100 Type а h C Capacitance meter GRM21 1.2 4.0 1.65 45 (in mm) (in mm) Fig. 2 Fig.3 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at Solderability of 75% of the terminations are to be soldered evenly and 80 to 120°C for 10 to 30 seconds. After preheating, immerse in 13 Termination continuously. eutectic solder solution for 2±0.5 seconds at 230±5℃ or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C. No defects or abnormalities Appearance Capacitance Within ±7.5% Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the Change Resistance capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution 14 to Soldering D.F 0.01 max at 270±5°C for 10±0.5 seconds. Let sit at room temperature for Heat More than $10,000M\Omega$ I.R. 24±2 hours, then measure. Dielectric No failure Strength Appearance No defects or abnormalities Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Capacitance Within ±7.5% Perform the five cycles according to the four heat treatments Change listed in the following table. Let sit for 24±2 hours at room tem-Temperature perature, then measure. D.F. 0.01 max 15 Cycle Step I.R. More than $10,000M\Omega$ 2 3 4 85⁺³_o -25±3 Room Temp. Room Temp. Temp. (℃) Dielectric No failure 30±3 2 to 3 30±3 Time (min.) 2 to 3 Strength Appearance No defects or abnormalities Capacitance Within ±12.5% Sit the capacitor at 40±2℃ and 90 to 95% humidity for 500±12 Change Humidity, Steady D.F. 0.02 max Remove and let sit for 24±2 hours at room temperature, then State I.R. More than 1,000M Ω measure Dielectric No failure Strength Appearance No defects or abnormalities Apply the rated voltage at 40±2℃ and 90 to 95% humidity for Capacitance Within ±12.5% Humidity 500±12 hours. Remove and let sit for 24±2 hours at room tem-Change 17 Load perature, then measure. The charge/discharge current is less D.F. 0.02 max. than 50mA. I.R. More than $500M\Omega$ No defects or abnormalities Appearance Capacitance Apply 200% of the rated voltage for 1,000±12 hours at 85±3℃. Within ±12.5% Change Let sit for 24±2 hours at room temperature, then measure. 18 Temperature The charge/discharge current is less than 50mA. Load D.F. 0.02 max

I.R.

More than $1,000M\Omega$

Chip Monolithic Ceramic Capacitors



Low ESL LLL/LLA/LLM Series

- Features (Reversed geometry Low ESL Type)
- 1. Low ESL, good for noise reduction for high frequency
- 2. Small, high cap
- Applications

Part Number

- 1. High speed micro processor
- 2. High frequency digital equipment

Part Number	Dimensions (mm)									
Fait Nullibei	L	W	Т							
LLL185	1.6 ±0.1	0.8 ±0.1	0.6 max.							
LLL216	2.0 +0.1	1.25 ±0.1	0.6 ±0.1							
LLL219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1							
LLL317	3.2 ±0.15	1.6 ±0.15	0.7 ±0.1							
LLL31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1							

LLL31

Reversed geometry Low ESL Type

LLL18

LxW			1.6	8.0x					2.0x	1.25					3.2	x1.6		
тс			X7R (R7)			X7S (C7)			X7R (R7)			X7S (C7)			X7R (R7)			X5R (R6)
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	6.3 (0J)
Capacitance (Ca	pacitar	nce par	t numbe	ering co	de) and	T (mm) Dime	nsion (T	Dimen	sion pa	rt numk	ering c	ode)					
2200pF (222)	0.5 (5)																	
3300pF (332)	0.5 (5)																	
4700pF (472)	0.5 (5)						0.6 (6)											
6800pF (682)		0.5 (5)					0.6 (6)											
10000pF (103)		0.5 (5)	0.5 (5)				0.6 (6)						0.7 (7)					
15000pF (153)		0.5 (5)	0.5 (5)				0.6 (6)						0.7 (7)	0.7 (7)				
22000pF (223)		0.5 (5)	0.5 (5)				0.6 (6)	0.6 (6)					0.7 (7)	0.7 (7)				
33000pF (333)			0.5 (5)				0.85 (9)	0.6 (6)	0.6 (6)				0.7 (7)	0.7 (7)				
47000pF (473)			0.5 (5)					0.6 (6)	0.6 (6)				0.7 (7)	0.7 (7)				
68000pF (683)			0.5 (5)					0.6 (6)	0.6 (6)				0.7 (7)	0.7 (7)				
0.10μF (104)				0.5 (5)				0.6 (6)	0.6 (6)				1.15 (M)	0.7 (7)				
0.15μF (154)					0.5 (5)			0.85 (9)	0.6 (6)				1.15 (M)	0.7 (7)				
0.22μF (224)					0.5 (5)					0.6 (6)				1.15 (M)				
0.33μF (334)						0.5 (5)				0.6 (6)				1.15 (M)	0.7 (7)			
0.47μF (474)						0.5 (5)				0.85 (9)				1.15 (M)	0.7 (7)			

LLL21

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from	the prec	eding pa	ge.					•										٠ 0.
Part Number			LL	L18					LLI	L21					LLI	L31		
LxW			1.6	x0.8					2.0x	1.25					3.2	κ1.6		
тс			X7R (R7)			X7S (C7)			X7R (R7)			X7S (C7)			X7R (R7)			X5R (R6)
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	6.3 (0J)
Capacitance (Ca	pacitar	nce par	t numbe	ering co	de) and	mm) T b	n) Dimei	nsion (T	Dimen	sion pa	rt numk	pering o	ode)			l .		
0.68μF (684)											0.85 (9)				1.15 (M)	0.7 (7)		
1.0μF (105)						0.5 (5)					0.85 (9)				1.15 (M)	0.7 (7)		
1.5μF (155)											0.85 (9)					1.15 (M)	0.7 (7)	
2.2µF (225)												0.85 (9)				1.15 (M)	0.7 (7)	
4.7μF (475)																	1.15 (M)	
10μF (106)																		1.25 (B)

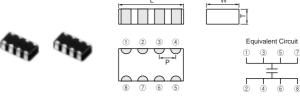
The part numbering code is shown in ().

Reversed geometry Low ESL Type Low Profile

Part Number		LLI	L18				LL	L21				LL	L31	
LxW		1.6	x0.8				2.0x	1.25				3.2	x1.6	
тс		X7R (R7)		X7S (C7)			X7R (R7)			X7S (C7)			7R 1 7)	
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitanc	e part nur	mbering o	ode) and	T (mm) D	imension	(T Dimen	sion part	numberir	ig code)				
680pF(681)					0.5(5)									
1000pF(102)					0.5(5)									
1500pF(152)					0.5(5)									
2200pF(222)					0.5(5)									
3300pF(332)					0.5(5)									
4700pF(472)					0.5(5)									
6800pF(682)					0.5(5)									
10000pF(103)	0.5(5)	0.5(5)			0.5(5)	0.5(5)					0.5(5)			
15000pF(153)	0.5(5)	0.5(5)			0.5(5)	0.5(5)					0.5(5)	0.5(5)		
22000pF(223)		0.5(5)				0.5(5)	0.5(5)				0.5(5)	0.5(5)		
33000pF(333)		0.5(5)				0.5(5)	0.5(5)				0.5(5)	0.5(5)		
47000pF(473)		0.5(5)					0.5(5)					0.5(5)	0.5(5)	
68000pF(683)			0.5(5)				0.5(5)					0.5(5)	0.5(5)	
0.10μF(104)			0.5(5)				0.5(5)					0.5(5)	0.5(5)	
0.15μF(154)								0.5(5)					0.5(5)	
0.22μF(224)				0.5(5)				0.5(5)					0.5(5)	
0.33μF(334)				0.5(5)				0.5(5)					0.5(5)	
0.47μF(474)									0.5(5)					0.5(5)
0.68μF(684)														0.5(5)
1.0μF(105)										0.5(5)				

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.


Dimensions are shown in mm and Rated Voltage in Vdc.

■ Features (Eight Terminals Low ESL Type)

- 1. Low ESL (100pH), suitable to decoupling capacitor for 1GHz clock speed IC.
- 2. Small, large cap

■ APPLICATIONS

- 1. High speed micro processor
- 2. High frequency digital equipment.

Part Number LLA185 LLA215 LLA219 LLA315 LLA319	Dimensions (mm)										
Part Number	L	W	T	P							
LLA185	1.6 ±0.1	0.8 ±0.1	0.5 +0.05/-0.1	0.4 ±0.1							
LLA215	2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05							
LLA219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.5 ±0.05							
LLA315	3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1							
LLA319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.8 ±0.1							
LLA31M	3.2 ±0.15	1.6 ±0.15	1.15±0.1	0.8 ±0.1							

Eight Terminals Low ESL Type

Part Number	LLA18			LLA21				LLA31	1
LxW	1.6x0.8			2.0x1.25				3.2x1.6	
тс	X7S (C7)			(7R R7)		X7S (C7)		X7R (R7)	
Rated Volt.	(0G)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	(0G)
Capacitance (Ca	pacitance par	t numbering co	de) and T (mr	m) Dimension (T	Dimension pa	rt numbering	code)		
10000pF(103)		0.85(9)							
15000pF(153)		0.85(9)							
22000pF(223)		0.85(9)							
33000pF(333)		0.85(9)							
47000pF(473)		0.85(9)							
68000pF(683)			0.85(9)						
0.10μF(104)			0.85(9)				0.85 (9)		
0.15μF(154)			0.85(9)				1.15(M)		
0.22μF(224)			0.85(9)				0.85(9)		
0.33μF(334)	0.5(5)			0.85(9)			0.85(9)		
0.47μF(474)	0.5(5)			0.85(9)			0.85(9)		
0.68μF(684)				0.85(9)			0.85(9)		
1.0μF(105)	0.5(5)				0.85(9)			0.85(9)	
1.5μF(155)					0.85(9)			0.85(9)	
2.2μF(225)						0.85(9)			0.85(9)
4.7μF(475)						0.85(9)			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Eight Terminals Low ESL Type Low Profile

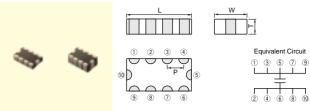
Part Number			LLA21				LLA31			
LxW			2.0x1.25			3.2x1.6				
тс			7R ?7)	X7S (C7)		X7R (R7)				
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 10 (1 C) (1 A)				
Capacitance (Ca	pacitance part n	umbering code)	and T (mm) Dim	ension (T Dimer	sion part numb	ering code)				
10000pF(103)	0.5(5)									
15000pF(153)	0.5(5)									
22000pF(223)	0.5(5)									
33000pF(333)		0.5(5)								
47000pF(473)		0.5(5)								
68000pF(683)		0.5(5)								
0.10μF(104)		0.5(5)				0.5(5)				
0.15μF(154)			0.5(5)	0.5(5)		0.5(5)				
0.22μF(224)			0.5(5)	0.5(5)		0.5(5)				

muRata

UU2		μ	ı۱
05.	12	. 1	4

Part Number			LLA21				LLA31			
LxW			2.0x1.25			3.2x1.6				
тс			7R R7)	X7S (C7)		X7R (R7)				
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)		
Capacitance (Cap	pacitance part n	umbering code)	and T (mm) Dim	ension (T Dimer	sion part numbe	ring code)	1			
0.33μF(334)			0.5(5)	0.5(5)			0.5(5)			
0.47μF(474)				0.5(5)			0.5(5)			
0.68μF(684)				0.5(5)			0.5(5)			
1.0μF(105)					0.5(5)			0.5(5)		
1.5μF(155)					0.5(5)			0.5(5)		
2.2μF(225)					0.5(5)			0.5(5)		

The part numbering code is shown in $\ (\).$


Dimensions are shown in mm and Rated Voltage in Vdc.

■ Features (Ten Terminals Low ESL Type)

- 1. Low ESL (45pH), suitable to decoupling capacitor for 2GHz clock speed IC.
- 2. Small, large cap

■ APPLICATIONS

- 1. High speed micro processor
- 2. High frequency digital equipment

Part Number	Dimensions (mm)							
Part Number	L	W	Т	Р				
LLM215	2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05				
LLM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.5 ±0.05				
LLM315	3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1				
LLM31M	3.2 ±0.15	1.6 ±0.15	1.15±0.1	0.8 ±0.1				

Ten Terminals Low ESL Type

Part Number		LLN	M21	LLM31			
LxW		2.0x	1.25	3.2x1.6			
тс	X7R X7S (C7)			X7R (R7)			
Rated Volt.	25 16 6.3 4 (1C) (0J) (0G)				16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Cap	oacitance part nur	nbering code) and	T (mm) Dimension	(T Dimension part	numbering code)		
10000pF(103)	0.85 (9)						
15000pF(153)	0.85 (9)						
22000pF(223)	0.85(9)						
33000pF(333)	0.85 (9)						
47000pF(473)	0.85(9)						
68000pF(683)		0.85(9)					
0.10μF(104)		0.85(9)			1.15(M)		
0.15μF(154)		0.85(9)			1.15(M)		
0.22μF(224)		0.85(9)			1.15(M)		
0.33μF(334)			0.85(9)		1.15(M)		
0.47μF(474)			0.85(9)		1.15(M)		
0.68μF(684)			0.85(9)		1.15(M)		
1.0μF(105)			0.85(9)		1.15(M)		
1.5μF(155)			0.85(9)			1.15(M)	
2.2μF(225)				0.85(9)		1.15(M)	
3.3μF(335)							1.15(M)
4.7μF(475)							1.15(M)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Ten Terminals Low ESL Type Low Profile

Part Number	LLM21				LLM31			
LxW	2.0x1.25				3.2x1.6			
тс	X7R (R7)			X7S (C7)	X7R (R7)			
Rated Volt.	25 (1E)	16 (1C)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)	
Capacitance (Ca	pacitance part nu	mbering code) and	T (mm) Dimension	(T Dimension part	numbering code)			
10000pF(103)	0.5(5)							
15000pF(153)	0.5(5)							
22000pF(223)	0.5(5)							
33000pF(333)		0.5(5)						
47000pF(473)		0.5(5)						
68000pF(683)		0.5(5)						
0.10μF(104)		0.5(5)			0.5(5)			
0.15μF(154)			0.5(5)		0.5(5)			

CUZL	pui
05.1	2.14

Part Number	LLM21				LLM31				
LxW	2.0x1.25				3.2x1.6				
тс	X7R (R7)			X7S (C7)	X7R (R7)				
Rated Volt.	25 (1E)	16 (1C)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)		
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)									
0.22μF(224)			0.5 (5)		0.5 (5)				
0.33μF(334)			0.5 (5)			0.5(5)			
0.47μF(474)			0.5 (5)			0.5(5)			
0.68μF(684)			0.5 (5)			0.5 (5)			
1.0μF(105)				0.5(5)					
1.5μF(155)				0.5(5)					
2.2μF(225)				0.5(5)			0.5(5)		

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Ite	em		Spec	cifications			Test Method			
1	Operating Temperat Range	•	R6: -55 to R7, C7: -5	+85°C 5 to +125°C							
2	Rated Vo	ltage	See the prev	vious pages.			The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearar	nce	No defects of	or abnormalities			Visual inspection				
4	Dimensio	ns	Within the sp	pecified dimension	n		Using calipers				
5	Dielectric	Strength	No defects of	or abnormalities			is applied between the te	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation Resistant		More than 1 (Whichever	$0,000 \mathrm{M}\Omega$ or 5009 is smaller)	⊋·F		The insulation resistance not exceeding the rated within 2 minutes of charge	oltage at 25°C and			
7	Capacita	nce	Within the s	pecified tolerance	•		The capacitance/D.F. sho				
8	Dissipation Factor (D.F.) W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1					Capacitance C≦10μF (10V min.) C≦10μF (6.3V max.) C>10μF	Frequency 1±0.1kHz 1±0.1kHz 120±24kHz	Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms			
9	Capacitar Temperat Character	R6		Cap.Change Within ±15% Within ±15% Within ±22%	The capacitance change should be measured after 5 min. at each specified temperature stage. Step Temperature (°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2						
							The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. Solder the capacitor to the test jig (glass epoxy board) using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as hear shock.				
10	Adhesive Streng of Termination		No removal	of the termination	ns or other defe	ct should occur.					
		Appearance	No defects of	or abnormalities			Solder the capacitor to the	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The			
		Capacitance	Within the sp	pecified tolerance)						
11	Vibration Resistance	bration				capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).					
12	9		% of the terminations are to be soldered evenly d continuously.			Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C, or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.					
	Appearance No marking defects				Preheat the capacitor at 120 to 150°C for 1 minute. Immerse						
	Resistance	Capacitance Change Within ±7.5%			the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 48±4						
13	to Soldering	D.F.		nin.; 0.025 max. nax.; 0.035 max.	*1		hours, then measure.				
	Heat	I.R.				er is smaller)	Initial measurement. Perform a best treatment.	ot at 150+0 00 (-	one hour card that		
		I.R. More than 10,000MΩ or 500Ω · F (Whichever is smaller) Dielectric Strength No failure		•	Perform a heat treatment at 150 ⁺⁰ ₋₁₀ °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.						

Continued from the preceding page.

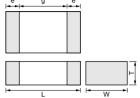
\square	Continued fr	om the pred	eding page.						
No.	Ite	em	Specifications	Test Method					
		Appearance Capacitance	No marking defects Within ±7.5% *1	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments					
		Change D.F.	W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1	listed in the following table. Let sit for 48±4 hours at room temperature, then measure. Step 1 2 3 4					
14	Temperature	I.R.	More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)	Tomp (°C) Min. Operating Room Max. Operating Room					
	No. Item			Temp. (*C) Temp. ±3 Temp. Temp. ±3 Temp. Time (min.) 30±3 2 to 3 30±3 2 to 3					
		Dielectric Strength	No failure	 Initial measurement. Perform a heat treatment at 150^{±9}/₁₀°C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement. 					
		Appearance	No marking defects						
15	Temperature Cycle I S S I I I I I I I I I I I I I I I I	Capacitance Change	Within ±12.5% *1	Sit the capacitor at 40±2°C and 90 to 95% humidity for 500± hours. Remove and let sit for 48±4 hours at room temperatur					
		D.F.	0.05 max. *1	then measure.					
		I.R.	More than 1,000M Ω or $50\Omega \cdot F$ (Whichever is smaller)						
		Appearance	No marking defects						
	Humidity (Steady State) Humidity Load High Temperature Load	Capacitance Change	Within ±12.5% *1	Apply the rated voltage at 40±2°C and 90 to 95% humidity for					
16		D.F.	0.05 max. *1	500±12 hours. Remove and let sit for 48±4 hours at room					
		I.R.	More than 500M Ω or 25 Ω · F *1 (Whichever is smaller)	temperature, then measure. The charge/discharge current is less than 50mA.					
		Dielectric Strength	No failure						
		Appearance	No marking defects	Apply 200% of the rated voltage for 1000±12 hours at the					
		Capacitance Change	Within ±12.5% *1	maximum operating temperature ±3°C. Let sit for 48±4 hours at room temperature, then measure. The charge/discharge					
17	Humidity (Steady State) High Temperature	D.F.	W.V.: 25V min.; 0.04 max. W.V.: 16V max.; 0.05 max. *1	current is less than 50mA. •Initial measurement.					
		I.R.	More than 1,000M Ω or 50 Ω · F *1 (Whichever is smaller)	Apply 200% (*2) of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for					
		Dielectric Strength	No failure	48±4 hours at room temperature. Perform initial measurement. (*1)					

^{*1 :} The ligure Indicates typical inspection.Please refer to individual specifications.

^{*2 :} Some of the parts are applicable in rated voltage×150%. Please refer to individual specifications.

Chip Monolithic Ceramic Capacitors

High Frequency for Flow/Reflow Soldering GQM Series


■ Features

- 1. HiQ and low ESR at VHF, UHF, Microwave
- 2. Feature improvement, low power consumption for mobile telecommunication. (Base station, terminal, etc.)

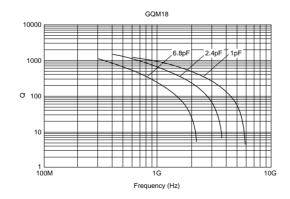
■ Applications

High frequency circuit (Mobile telecommunication, etc.)

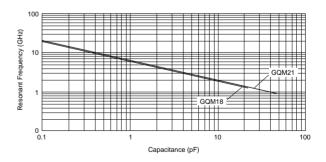
Part Number		Dimensions (mm)								
Part Number	L	W	T	е	g min.					
GQM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5					
GQM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7					

Part Number	GQI	2.00x1.25		21
LxW	1.60x0.80		2.00x1.	25
тс	C0 (5	0G C)	C0G (5C)	
Rated Volt.	100 (2A)			50 (1H)
Capacitance (Cap	pacitance part numbering code)	and T (mm) Dimension (T Dimen	nsion part numbering code)	
0.50pF(R50)	0.80 (8)		0.85(9)	
0.75pF(R75)	0.80 (8)		0.85(9)	
1.0pF(1R0)	0.80 (8)		0.85(9)	
1.1pF(1R1)	0.80 (8)		0.85(9)	
1.2pF(1R2)	0.80 (8)		0.85(9)	
1.3pF(1R3)	0.80 (8)		0.85(9)	
1.5pF(1R5)	0.80 (8)		0.85(9)	
1.6pF(1R6)	0.80 (8)		0.85(9)	
1.8pF(1R8)	0.80 (8)		0.85(9)	
2.0pF(2R0)	0.80 (8)		0.85(9)	
2.2pF(2R2)	0.80 (8)		0.85(9)	
2.4pF(2R4)	0.80 (8)		0.85(9)	
2.7pF(2R7)	0.80 (8)		0.85(9)	
3.0pF(3R0)	0.80 (8)		0.85(9)	
3.3pF(3R3)	0.80 (8)		0.85(9)	
3.6pF(3R6)	0.80 (8)		0.85(9)	
3.9pF(3R9)	0.80 (8)		0.85(9)	
4.0pF(4R0)	0.80 (8)		0.85(9)	
4.3pF(4R3)	0.80 (8)		0.85(9)	
4.7pF(4R7)	0.80 (8)		0.85(9)	
5.0pF(5R0)	0.80 (8)		0.85(9)	
5.1pF(5R1)	0.80 (8)		0.85(9)	
5.6pF(5R6)	0.80 (8)		0.85(9)	
6.0pF(6R0)	0.80 (8)		0.85(9)	
6.2pF(6R2)	0.80 (8)		0.85(9)	
6.8pF(6R8)	0.80 (8)		0.85 (9)	
7.0pF(7R0)		0.80(8)	0.85(9)	
7.5pF(7R5)		0.80(8)	0.85 (9)	
8.0pF(8R0)		0.80(8)	0.85(9)	
8.2pF(8R2)		0.80(8)	0.85(9)	
9.0pF(9R0)		0.80(8)	0.85(9)	
9.1pF(9R1)		0.80(8)	0.85(9)	
10pF(100)		0.80(8)	0.85(9)	

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.


• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Part Number	GQM18	3	GQ	M21		
L x W	1.60x0.8	30	2.00x1.25			
тс	C0G (5C)		C0G (5C)			
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)		
Capacitance (Capacita	ince part numbering code) and	d T (mm) Dimension (T Dimer	sion part numbering code)			
11pF(110)		0.80(8)	0.85(9)			
12pF(120)		0.80(8)	0.85(9)			
13pF(130)		0.80(8)	0.85(9)			
15pF(150)		0.80(8)	0.85(9)			
16pF(160)		0.80(8)	0.85(9)			
18pF(180)		0.80(8)	0.85(9)			
20pF(200)		0.80(8)		0.85 (9)		
22pF(220)		0.80(8)		0.85 (9)		
24pF(240)		0.80(8)		0.85(9)		
27pF(270)		0.80(8)		0.85 (9)		
30pF(300)		0.80(8)		0.85 (9)		
33pF(330)		0.80(8)		0.85 (9)		
36pF(360)		0.80(8)		0.85 (9)		
39pF(390)		0.80(8)		0.85 (9)		
43pF(430)		0.80(8)		0.85 (9)		
47pF(470)		0.80(8)		0.85(9)		
51pF(510)		0.80(8)		0.85(9)		
56pF(560)		0.80(8)		0.85 (9)		
62pF(620)		0.80(8)		0.85 (9)		
68pF(680)		0.80(8)		0.85 (9)		
75pF(750)		0.80(8)		0.85 (9)		
82pF(820)		0.80(8)		0.85(9)		
91pF(910)		0.80(8)		0.85(9)		
100pF(101)		0.80(8)		0.85(9)		


The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Q-Frequency Characteristics

■ Resonant Frequency-Capacitance

No.	Ite	em	Specifications		Test Me	thod	
1	Operating Temperatu		_55 to 125℃	Reference Temperatur (2C, 3C, 4C : 20℃)	re : 25℃		
2	Rated Vo		See the previous page.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	n	Within the specified dimensions	Using calipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be ol is applied between the provided the charge/di	termination	ns for 1 to 5 se	conds,
6	Insulation	Resistance	More than $10,000M\Omega$ (Whichever is smaller)	The insulation resistan voltage not exceeding max. and within 2 minutes.	the rated vo	oltage at 25℃ a	
7	Capacita	nce	Within the specified tolerance	The capacitance/Q sho			at the
			30pF min. : Q≥1400	frequency and voltage	shown in th	ne table.	
8	Q		30pF max. : Q≧800+20C	Frequency		1±0.1MHz	
			C : Nominal Capacitance (pF)	Voltage		0.5 to 5Vrms	<u> </u>
			O . Nonlina Capacitance (pr)				
		Capacitance Change	Within the specified tolerance (Table A)	The temperature coeffi measured in step 3 as			the capacitance
				When cycling the temp			step 1 through 5
		Temperature Coefficient	Within the specified tolerance (Table A)	the capacitance should temperature coefficient			
9	Capacitance Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)	The capacitance drift is between the maximum steps 1, 3 and 5 by the Step 1 2 3 4 5	s calculated and minim e capacitand Te Ref	l by dividing th um measured	e differences values in the p 3. b) ±2 ±2
						•	
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to Fig. 1 using a eutectic swith the test jig for 10± The soldering should be reflow method and sho soldering is uniform and Type GQM18	solder. Then 1 sec. e done eithe uld be cond	apply 10N* for er with an iron o ucted with care	or using the so that the
			Solder resist	GQM21	1.2	4.0	1.65
			Baked electrode or copper foil		Fig.	1	(in mm)
		Appearance	No defects or abnormalities	Solder the capacitor to	the test jig	(glass epoxy b	poard) in the
		Capacitance	Within the specified tolerance	same manner and und			, ,
11	Vibration Resistance	Q	30pF min. : Q≥1400 30pF max. : Q≥800+20C	The capacitor should be having a total amplitude uniformly between the frequency range, from be traversed in approximate traversed in approximate the control of the contro	le of 1.5mm approximat 10 to 55Hz imately 1 m	the frequency te limits of 10 a and return to inute.	y being varied and 55Hz. The 10Hz, should
			C : Nominal Capacitance (pF)	This motion should be 3 mutually perpendicul	• •	•	
				5 mataday porportation	GII COLIOTI	- (101a1 01 0 110	<u></u>

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method					
			No crack or marked defect should occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3.					
12	2 Deflection		Type a b c GQM18 1.0 3.0 1.2 GQM21 1.2 4.0 1.65 (in mm)	The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Capacitance meter 45 45 45					
				Fig. 3					
13	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.					
			The measured and observed characteristics should satisfy the						
		specifications in the following table. Appearance No marking defects		-					
		Capacitance	Within ±2.5% or ±0.25 pF						
	Resistance to Soldering Heat	Change	(Whichever is larger)	Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution					
14		Q	30pF min. : Q≥1400 30pF max. : Q≥800+20C	at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.					
		I.R.	C : Nominal Capacitance (pF) More than 10,000MΩ						
		Dielectric	No failure						
		Strength							
			The measured and observed characteristics should satisfy the specifications in the following table.						
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10).					
	Townselve	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Perform the five cycles according to the four heat treatments listed in the following table.					
15	Temperature Cycle		30pF min. : Q≥1400 30pF max. : Q≥800+20C	Let sit for 24±2 hours at room temperature, then measure. Step 1 2 3 4					
		Q	C : Nominal Capacitance (pF)	Temp. (°C) Min. Operating Room Max. Operating Room Temp. +0/-3 Temp. Temp. +3/-0 Temp.					
		I.R.	More than 10,000M Ω	Time (min.) 30±3 2 to 3 30±3 2 to 3					
		Dielectric Strength	No failure						
			The measured and observed characteristics should satisfy the specifications in the following table.						
		Appearance	No marking defects						
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	Lat the connector sit at 40±2% and 00 to 05% humidity for					
16	Humidity Steady State	Q	30pF min. : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF max. : Q≥200+10C	Let the capacitor sit at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure.					
		1.0	C : Nominal Capacitance (pF)						
		I.R. Dielectric	More than $1,000M\Omega$	-					
		Strength	No failure						

Continued from the preceding page.

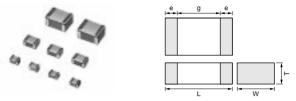
No.	Ite	em	Specifications	Test Method
			The measured and observed characteristics should satisfy the specifications in the following table.	
		Appearance	No marking defects	
17		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2°C and 90 to 95% humidity for
	Humidity Load	Q	30pF min. : Q≥200 30pF max. : Q≥100+10C/3	500±12 hours. Remove and let sit for 24±2 hours at room temperature then measure. The charge/discharge current is less than 50mA.
			C : Nominal Capacitance (pF)	
		I.R.	More than $500M\Omega$	
		Dielectric Strength	No failure	
			The measured and observed characteristics should satisfy the specifications in the following table.	
		Appearance	No marking defects	
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the
18	High Temperature Load	Q	30pF min. : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF max. : Q≥200+10C	maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.
			C : Nominal Capacitance (pF)	
		I.R.	More than 1,000M Ω	
		Dielectric Strength	No failure	

Table A

		Capacitance Change from 25℃ (%)							
Char.	Nominal Values (ppm/°C) *1	− 55℃		−30°C		−10°C			
	(ρρπ, ε) - τ	Max.	Min.	Max.	Min.	Max.	Min.		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		

^{*1 :} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

Chip Monolithic Ceramic Capacitors



High Frequency Type ERB Series

SMD Type

■ Features (ERB Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies
- 2. Nickel barriered terminations of ERB series improve solderability and decrease solder leaching.
- 3. ERB18/21 series are designed for both flow and reflow soldering and ERB32 series are designed for reflow soldering.

Part Number		Dimen	sions (mm)		
rait Number	L	W	T max.	e min.	g min.
ERB188	1.6±0.1	0.8±0.1	0.9	0.2	0.5
ERB21B	2.0±0.3	1.25±0.3	1.35	0.25	0.7
ERB32Q	3.2±0.3	2.5±0.3	1.7	0.3	1.0

■ Applications

High frequency and high-power circuits

Part Number	t Number ERB18 ERB21		ERB32						
LxW	1.6x0.8		2.0x1.25		3.2x2.5				
тс	C0G (5C)		C0G (5C)				C0G (5C)		
Rated Volt.	250 (2E)	250 (2E)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	250 (2E)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance par	t numbering co	de) and T (mm) Dimension (1	Dimension pa	rt numbering o	ode)	·	'
0.50pF(R50)	0.8(8)	1.25(B)			1.50(Q)				
0.75pF(R75)	0.8(8)	1.25(B)			1.50(Q)				
1.0pF(1R0)	0.8(8)	1.25(B)			1.50(Q)				
1.1pF(1R1)	0.8(8)	1.25(B)			1.50(Q)				
1.2pF(1R2)	0.8(8)	1.25(B)			1.50(Q)				
1.3pF(1R3)	0.8(8)	1.25(B)			1.50(Q)				
1.5pF(1R5)	0.8(8)	1.25(B)			1.50(Q)				
1.6pF(1R6)	0.8(8)	1.25(B)			1.50(Q)				
1.8pF(1R8)	0.8(8)	1.25(B)			1.50(Q)				
2.0pF(2R0)	0.8(8)	1.25(B)			1.50(Q)				
2.2pF(2R2)	0.8(8)	1.25(B)			1.50(Q)				
2.4pF(2R4)	0.8(8)	1.25(B)			1.50(Q)				
2.7pF(2R7)	0.8(8)	1.25(B)			1.50(Q)				
3.0pF(3R0)	0.8(8)	1.25(B)			1.50(Q)				
3.3pF(3R3)	0.8(8)	1.25(B)			1.50(Q)				
3.6pF(3R6)	0.8(8)	1.25(B)			1.50(Q)				
3.9pF(3R9)	0.8(8)	1.25(B)			1.50(Q)				
4.3pF(4R3)	0.8(8)	1.25(B)			1.50(Q)				
4.7pF(4R7)	0.8(8)	1.25(B)			1.50(Q)				
5.1pF(5R1)	0.8(8)	1.25(B)			1.50(Q)				
5.6pF(5R6)	0.8(8)	1.25(B)			1.50(Q)				
6.2pF(6R2)	0.8(8)	1.25(B)			1.50(Q)				
6.8pF(6R8)	0.8(8)	1.25(B)			1.50(Q)				
7.5pF(7R5)	0.8(8)	1.25(B)			1.50(Q)				
8.2pF(8R2)	0.8(8)	1.25(B)			1.50(Q)				
9.1pF(9R1)	0.8(8)	1.25(B)			1.50(Q)				
10pF(100)	0.8(8)	1.25(B)			1.50(Q)				
11pF(110)	0.8(8)	1.25(B)			1.50(Q)				
12pF(120)	0.8(8)	1.25(B)			1.50(Q)				
13pF(130)	0.8(8)	1.25(B)			1.50(Q)				

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product advance notice. Please check with our sales representatives or product advance notice. Please check with our sales representatives or product advance notice. Please check with our sales representatives or product advance notice. Please check with our sales representatives or product advance notice. Please check with our sales representatives or product advance notice. Please check with our sales representatives or product advance notice. Please check with our sales representatives or product advance notice. Please advance notice. Please advance notice.

Continued from the preceding page.

Part Number	ERB18		ERB21				ERB32			
_ x W	1.6x0.8		2.0x1.25		3.2x2.5					
гс	C0G (5C)		C0G (5C)				C0G (5C)			
Rated Volt.	250 (2E)	250 (2E)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	250 (2E)	100 (2A)	50 (1H)	
Capacitance (Cap	pacitance par	t numbering co	de) and T (mm) Dimension (T	Dimension pa	rt numbering c	ode)			
15pF(150)	0.8(8)	1.25(B)			1.50(Q)					
16pF(160)	0.8(8)	1.25(B)			1.50(Q)					
18pF(180)	0.8(8)	1.25(B)			1.50(Q)					
20pF(200)	0.8(8)	1.25(B)			1.50(Q)					
22pF(220)	0.8(8)	1.25(B)			1.50(Q)					
24pF(240)	0.8(8)	1.25(B)			1.50(Q)					
27pF(270)	0.8(8)	1.25(B)			1.50(Q)					
30pF(300)	0.8(8)	1.25(B)			1.50(Q)					
33pF(330)	0.8(8)	1.25(B)			1.50(Q)					
36pF(360)	0.8(8)	1.25(B)			1.50(Q)					
39pF(390)	0.8(8)	1.25(B)			1.50(Q)					
43pF(430)	0.8(8)	1.25(B)			1.50(Q)					
47pF(470)	0.8(8)	1.25(B)			1.50(Q)					
51pF(510)	0.8(8)	1.25(B)			1.50(Q)					
56pF(560)	0.8(8)	1.25(B)			1.50(Q)					
62pF(620)	0.8(8)	1.25(B)			1.50(Q)					
68pF(680)	0.8(8)	1.25(B)			1.50(Q)					
75pF(750)	0.8(8)	1.25(B)			1.50(Q)					
82pF(820)	0.8(8)	1.25(B)			1.50(Q)					
91pF(910)	0.8(8)	1.25(B)			1.50(Q)					
100pF(101)	0.8(8)	1.25(B)			1.50(Q)					
120pF(121)	0.0(0)	1.25(2)	1.25(B)		1.50(Q)					
130pF(131)			1.25(B)		1.00(4)	1.50(Q)				
150pF(151)			1.23(0)	1.25(B)		1.50(Q)				
160pF(161)				1.25(B)		1.50(4)	1.50(Q)			
180pF(181)				1.23(2)			1.50(Q)			
200pF(201)							1.50(Q)			
220pF(221)							1.50(Q)			
240pF(241)							1.50(\(\mathbf{Q}\))	1.50(Q)		
270pF(271)								1.50(Q)		
300pF(301)								1.50(Q)		
330pF(331)								1.50(Q)		
360pF(361)								1.50(Q)		
390pF(391)								1.50(Q)		
430pF(431)								1.50(Q)		
-										
470pF(471)								1.50(Q)	1.50(Q	
510pF(511)										
560pF(561)									1.50(Q	
620pF(621)									1.50(Q	
680pF(681)									1.50(C	
750pF(751)									1.50(Q	
820pF(821)									1.50(Q	
910pF(911)									1.50(Q	

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

			0 15 11				
No.	Ite	em	Specifications		Test Meth	nod	
1	Operating Temperati		-55 to +125℃	Reference Temperati	ure: 25°C		
2			See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{PP} or V ^{OP} , whichever is larger, should be maintained within the rated voltage range.			
3	3 Appearance		No defects or abnormalities	Visual inspection			
4	Dimensio	ns	Within the specified dimension	Using calipers			
5	Dielectric	: Strength	No defects or abnormalities	No failure should be observed when 300%(*) of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. (*) 300V: 250%, 500V: 200%			5 seconds,
6	6 Insulation Resistance (I.R.)		1,000,000MΩ min. (C≥470pF) 100,000MΩ min. (C>470pF)	The insulation resistate voltage not exceeding humidity and within 2	g the rated vol	ltage at 25℃ a	
7	Capacita	nce	Within the specified tolerance	The capacitance/Q sl			at the
8	8 Q		C≤ 220pF : Q≥10,000 220pF < C≤ 470pF : Q≥ 5,000 470pF < C≤1,000pF : Q≥ 3,000 C : Nominal Capacitance (pF)	Frequency Voltage	e shown in the	e table. 1±0.1MHz 1±0.2Vrms	
		Capacitance Change	Within the specified tolerance (Table A-6)	The temperature coe capacitance measure	ed in step 3 as	a reference.	When cycling
		Temperature Coefficent	Within the specified tolerance (Table A-6)	capacitance should b	the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A.		
9	Capacitance Temperature Characteristics	rature teristics Capacitance Within =	Within ±0.2% or ±0.05pF (Whichever is larger)	The capacitance drift between the maximum 1, 3 and 5 by the cap Step 1 2 3 4 5 5	e differences		
			No removal of the terminations or other defects should occur.	Solder the capacitor	on the test jig	(glass epoxy	board) shown
Adhesive Strength of Termination		esive Strength		in Fig. 1 using an eut Then apply 10N* force The soldering should reflow method and sh soldering is uniform a Type ERB18 ERB21 ERB32	ectic solder. e in parallel w be done eithe nould be conde	with the test jigger with an iron ucted with car ects such as b 3.0 4.0 5.0	for 10±1sec. or using the re so that the

Continued from the preceding page

No.	o. Item		Specifications	Test Method				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the				
		Capacitance	Within the specified tolerance	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion				
11	Vibration Resistance	Q	Satisfies the initial value. $C \leq 220 pF : Q \geq 10,000$ $220 pF < C \leq 470 pF : Q \geq 5,000$ $470 pF < C \leq 1,000 pF : Q \geq 3,000$ $C : Nominal Capacitance (pF)$	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).				
			No crack or marked defect should occur.	Solder the capacitor on the test jig (glass epoxy board) shown				
12 Deflectio		n	20 50 Pressurizing speed : 1.0mm/sec. Pressurize b	in Fig. 2a using an eutectic solder. Then apply a force in the direction shown in Fig. 3a. The soldering should be done eithe with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
			Flexure : ≦1	Type a b c				
				ERB18 1.0 3.0 1.2				
			Capacitance meter	ERB21 1.2 4.0 1.65				
			45 45	ERB32 2.2 5.0 2.9				

Fig. 2a

Solderability of 95% of the terminations are to be soldered evenly and Termination continuously.

Fig.3a

specifications in the following table.

Immerse the capacitor in a solution of isopropyl alcohol and rosin (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in an eutectic solder or Sn-3.0Ag-0.5Cu solder solution for 5±0.5 seconds at 245±5℃.

(in mm)

Resistance to Soldering Heat

> Temperature Cycle

Humidity

Item Specifications No marked defect Appearance Within ±2.5% or ±0.25pf Capacitance Change (Whichever is larger) C≦ 220pF : Q≥10,000 220pF<C≤ 470pF : Q≥ 5,000 O 470pF<C≦1,000pF : Q≥ 3,000 Dielectric Strength No failure

The measured and observed characteristics should satisfy the

Preheat according to the conditions listed in the table below. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.

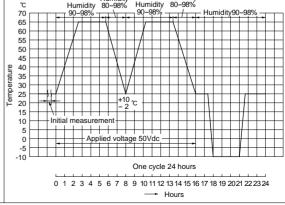
	Chip Size	Preheat Condition		
2	2.0×1.25mm max.	1minute at 120 to 150°C		
3	3.2×2.5mm	Each 1 minute at 100 to 120℃ and then 170 to 200℃		

The measured and observed characteristics should satisfy the specifications in the following table.

Item	Specifications
Appearance	No marked defect
Capacitance	Within ±5% or ±0.5pF
Change	(Whichever is larger)
	C≧30pF : Q≧350
Q	10pF≦C<30pF : Q≥275+ 5 C
	C<10pF : Q≥200+10C
I.R.	1,000MΩ min.
Dielectric Strength	No failure

Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.

Step	1	2	3	4
Temp. (℃)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.
Time (min.)	30±3	5 max.	30±3	5 max.


C: Nominal Capacitance (pF)

C: Nominal Capacitance (pF)

The measured and observed characteristics should satisfy the

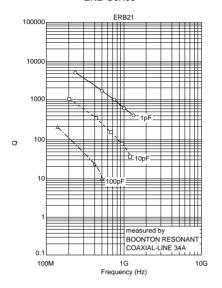
sp	pecifications in the following table.				
	Item	Specifications			
	Appearance	No marked defect			
	Capacitance	Within ±5% or ±0.5pF			
	Change	(Whichever is larger)			
		C≧30pF : Q≧350			
	Q	10pF≦C<30pF : Q≥275+ 5 C			
		C<10pF : Q≥200+10C			
	I.R.	1,000MΩ min.			
		C : Nominal Capacitance (pF)			

Apply the 24-hour heat (-10 to +65°C) and humidity (80 to 100%) treatment shown below, 10 consecutive times. Remove, let sit for 24±2 hours at room temperature, and measure

Continued from the preceding page.

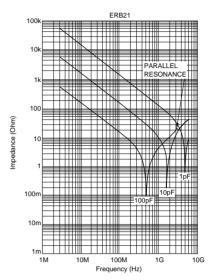
No.	Item	S	Specifications	Test Method
17	High Temperature	The measured and obse specifications in the follow Item Appearance Capacitance Change	rved characteristics should satisfy the ving table. Specifications No marked defect Within ±3% or ±0.3pF (Whichever is larger) C≥30pF: Q≥350 10pF≤C<30pF: Q≥275+ 5/2 C	Apply 200% (500V only 150%) of the rated voltage for 1,000±12 hours at 125±3°C. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R. Dielectric Strength	C<10pF : Q≧200+10C 1,000MΩ min. No failure C : Nominal Capacitance (pF)	The charge/discharge current is less than 50mA.

Table A-6

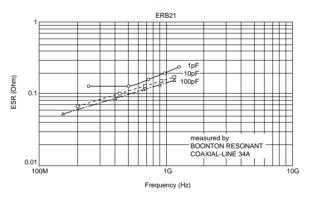

	Name to all Malaca	Capacitance Change from 25℃ (%)						
Char.	Nominal Values (ppm/°C) Note 1	-55		-30		-10		
	(ppin/ c) Note 1	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125℃ (for 5C)

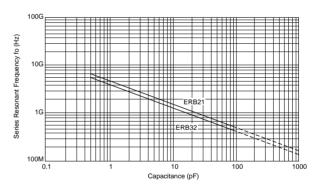
ERB Series Data


■ Q-Frequency Characteristics

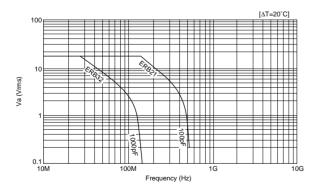
ERB Series


■ Impedance-Frequency Characteristics

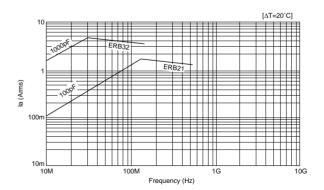
ERB Series


■ ESR-Frequency Characteristics

ERB Series

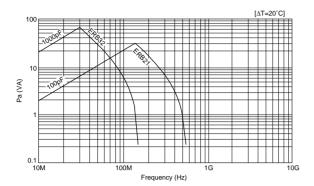


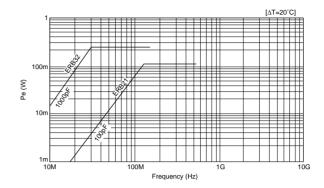
■ Resonant Frequency-Capacitance


ERB Series

■ Allowable Voltage-Frequency

■ Allowable Current-Frequency




ERB Series Data

Continued from the preceding page.

■ Allowable Apparent Power-Frequency

■ Allowable Effective Power-Frequency

■ Packaging Code

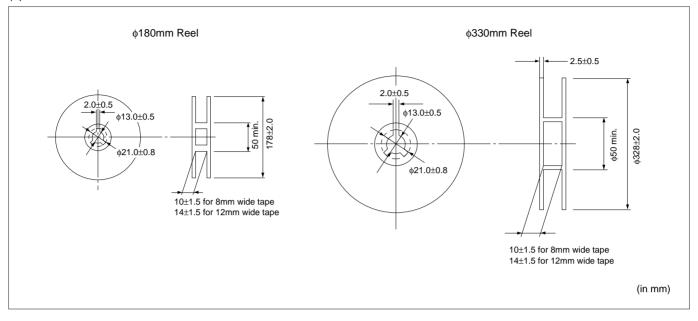
Packaging Type	Tana Carrier Dackaging	Bulk Casa Backaging	Bulk Packaging			
Packaging Type	Tape Carrier Packaging	Bulk Case Packaging	Bulk Packaging in a Bag	Bulk Packaging in a Tray		
Packaging Code	D, L, K, J	С	В	Т		

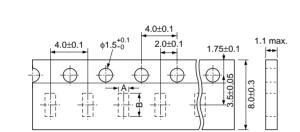
■ Minimum Quantity Guide

Part Number		Dim	ensions	(mm)	465	Quantity (
Part Number			, ,			nm reel		nm reel	Bulk Case	Bulk Bag
T	ODMOO	L	W	T	Paper Tape	Embossed Tape	Paper Tape	Embossed Tape		
Iltra Miniaturized	GRM02 GRM03	0.4	0.2	0.2	20,000	-		-	-	1 000
		0.6	0.3	0.3	15,000	-	50,000	-	45.000	1,000
	GRM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000	
	GRM21	2.0	4.05	0.6	4,000	-	10,000		10,000	1,000
			1.25	0.85/1.0 1.25	4,000	2 000	10,000	-	5,000 ²⁾	1,000 1,000
or Flow/Reflow				0.6/0.85	4 000	3,000		10,000	5,000	
roi riow/keilow	GRM31	3.2	1.6		4,000		10,000	10.000	-	1,000
		3.2	1.0	1.15 1.6	<u> </u>	3,000	<u> </u>	6,000	-	1,000
	GRM15X	1.0	0.5	0.25		2,000	50,000	· · ·	_	1,000
For Reflow	GRM155	1.0	0.5	0.25	10,000	-	50,000	-	50,000	1,000
	GRIVI155	1.0	0.5	0.85	10,000		50,000	10,000	50,000	1,000
				1.15	<u> </u>	4,000		 	-	1,000
	GRM32	2.2	2.5	1.15	<u> </u>	3,000	<u> </u>	10,000	-	1,000
	GRIVI32	3.2	2.5			2,000		8,000		
				1.6 1.8/2.0 2.5	-	2,000	-	6,000	-	1,000
					-	1,000	-	4,000	-	1,000
	GRM43			1.15 1.35/1.6 1.8/2.0	-	1,000	<u> </u>	5,000	-	
		4.5	3.2		-	1,000	<u> </u>	4,000	-	1,000
				2.5	-	500		2,000		1,000
				1.15	-	500	-	1,500	-	
				1.15 1.35/1.6 1.8/2.0	-	1,000	-	5,000	-	1,000
	GRM55	5.7	5.0		-	1,000	<u> </u>	4,000	-	1,000 500
				2.5 3.2		500	<u> </u>	2,000		500
	GJM03	0.6	0.2		- 45,000	300		1,500	-	
ligh Power Type	GJM05 GJM15	0.6 1.0	0.3	0.3	15,000	-	50,000	-	-	1,000
3	GQM18	1.6	0.8	0.5	10,000	-	50,000 10,000	-	50,000	1,000
-	GQM21	2.0	1.25	0.85	4,000	-	•	-	-	
ligh Frequency	ERB18	1.6	0.8	0.65 0.9 max.	4,000 4,000		10,000	-	-	1,000
light Frequency	ERB21	2.0	1.25	1.35 max.		2 000	10,000		-	1,000
-	ERB32	3.2	2.5		-	3,000	<u>-</u>	10,000	-	1,000
For Ultrasonic	GRM21	2.0	1.25	1.7 max. 0.85		2,000	10,000	8,000	-	1,000
roi dittasoriic	GMA05	0.5	0.5	0.85	4,000	-	-	-	-	400 1)
Micro Chip	GMA08	0.8	0.8	0.55			<u>-</u>		-	400 1)
	GNM1M			0.6	4 000	-	10,000	-		
-	GINIVITIVI	1.37	1.0	0.8	4,000	-	10,000	-	-	1,000
Array	GNM31	3.2	1.6	1.0	4,000	3 000	10,000		-	1,000
-	GNM21	2.0	1.25	0.6/0.85	4,000	3,000	10,000	10,000	-	1,000
	LLL18	0.8	1.25	0.6/0.65			· · · · · · · · · · · · · · · · · · ·			1,000
		0.6	1.0	0.5/0.6		4,000 4,000	<u> </u>	10,000	-	1,000
	LLL21	1.25	2.0	0.5/0.6		3,000	<u> </u>	10,000	-	1,000
-		1		0.85	<u>-</u>		<u> </u>	10,000	-	1,000
	LLL31	1.6	3.2	1.15	<u> </u>	4,000	<u> </u>	10,000	-	1,000
-	LLA18	1.6	0.8	0.5		3,000				1,000
-	LLA 10	1.6	0.0	0.5	-	4,000	-	10,000	-	1,000
Low ESL	LLA21	2.0	1.25	0.85	-	4,000	-	10,000		
LUW ESL					-	3,000	-	10,000	-	1,000
	11 424	2.0	1.0	0.5	-	4,000		10,000		1,000
	LLA31	3.2	1.6	0.85	-	3,000	-	10,000	-	1,000
-		-		1.15	-	3,000	-	10,000	-	1,000
	LLM21	2.0	1.25	0.5	-	4,000	-	10,000	-	1,000
		1		0.85 0.5	<u> </u>	3,000 4,000	-	10,000	-	1,000
+										

²⁾ $10\mu F,\,1.0\mu F,\,3.3/4.7\mu F$ of 6.3V R6 rated are not available by bulk case.

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$




Continued from the preceding page.

■ Tape Carrier Packaging

(1) Dimensions of Reel

(2) Dimensions of Paper Tape

Direction of Feed

8mm width 4mm pitch Tape

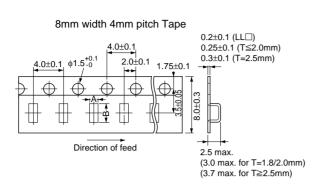
Part Number	Α	В
GRM18 GQM18 ERB18	1.05±0.1	1.85±0.1
GNM1M	1.17±0.05	1.55±0.05
GRM21 (T≦0.85mm) GQM21 GNM21	1.55±0.15	2.3±0.15
GRM31 (T≦0.85mm) GNM31 (T≦0.8mm)	2.0±0.2	3.6±0.2
GRM32 (T≦0.85mm)	2.8±0.2	3.6±0.2
	·	

8mm width 2mm pitch Tape	
0.4 max. (GRM02) 0.5 max. (GRM03/GJM03) 0.8 max. (GRM03/GJM05) 0.8 max. (GRM15/GJM15)	
Direction of Feed	

Part Number	A*	B*
GRM02	0.25	0.45
GJM03 GRM03	0.37	0.67
GJM15 GRM15	0.65	1.15

*Nominal Value

(in mm)



Continued from the preceding page.

(3) Dimensions of Embossed Tape

Part Number	Α	В
LLL18, LLA18	1.05±0.1	1.85±0.1
GRM21, ERB21 (T≧1.0mm) LLL21 LLA21, LLM21	1.45±0.2	2.25±0.2
GRM31 (T≥1.15mm) LLL31 LLA31, LLM31 GNM31 (T≥1.0mm)	1.9±0.2	3.5±0.2
GRM32, ERB32 (T≧1.15mm)	2.8±0.2	3.5±0.2

*Nominal Value

5±0. Direction of feed 2.5 max for GRM43/55 (3.7 max. for T=2.5mm) (4.7 max. for T≥3.0mm)

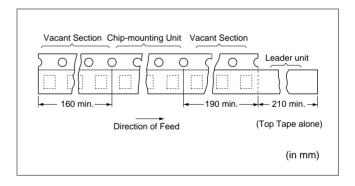
φ1.5^{+0.1}

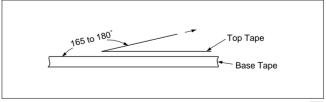
. 1.75+0.1

12mm width 8mm pitch Tape

4.0+0.1

2.0±0.1

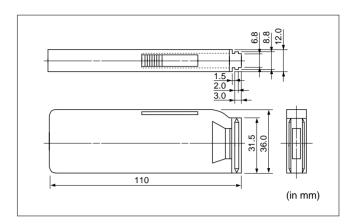

Part Number	A*	B*
GRM43	3.6	4.9
GRM55	5.2	6.1


*Nominal Value

(in mm)

(4) Taping Method

- ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2 Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
- 3 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- 5 The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- 6 Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
- 7 Peeling off force: 0.1 to 0.6N* in the direction shown below. GRM03 : 0.05 to 0.5N



Continued from the preceding page.

■ Dimensions of Bulk Case Packaging The bulk case uses antistatic materials. Please contact Murata for details.

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

⚠Caution

■ Storage and Operating Conditions

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases. Storage environment must be at an ambient temperature of 5-40 degree C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

1. Inspection

Thrusting force of the test probe can flex the PCB. resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

- 2. Board Separation (or depanalization)
 - (1) Board flexing at the time of separation causes cracked chips or broken solder.
 - (2) Severity of stresses imposed on the chip at the time of board break is in the order of: Pushback<Slitter<V Slot<Perforator.
- (3) Board separation must be performed using special jigs, not with hands.

3. Reel and bulk case

In the handling of reel and case, please be careful and do not drop it.

Do not use chips from a case which has been dropped.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCTS IS USED.

■ Soldering and Mounting

1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

[Component Direction]

Locate chip horizontal to the direction in which stress acts

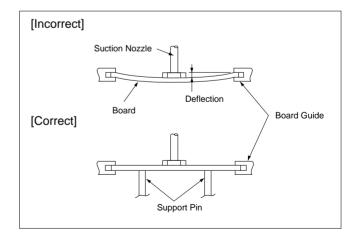
[Chip Mounting Close to Board Separation Point]

Perforation

Chip arrangement Worst A-C-(B-D) Best

(Reference Data 2. Board bending strength for solder fillet height) (Reference Data 3. Temperature cycling for solder fillet height) (Reference Data 4. Board bending strength for board material)

2. Solder Paste Printing


- Overly thick application of solder paste results in excessive fillet height solder.
 This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked
- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

3. Chip Placing

chips.

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. (Reference Data 5. Break strength)

⚠Caution

Continued from the preceding page.

4. Reflow Soldering

- Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips. So when preheating, keep temperature differential, ΔT , within the range shown in Table 1. The smaller the ΔT , the less stress on the chip.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the above table.

Table 1

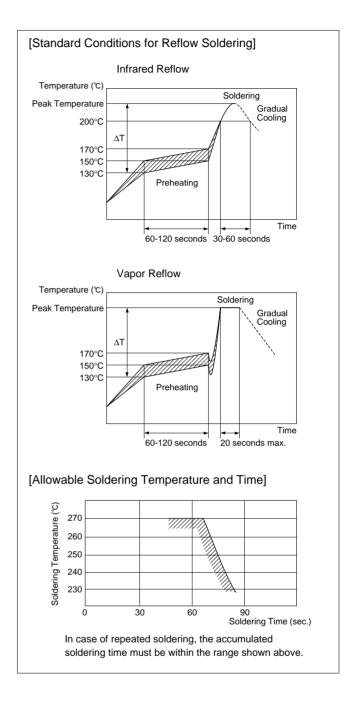
Part Number	Temperature Differential
GRM02/03/15/18/21/31	
GJM03/15	
LLL18/21/31	ΔΤ≦190℃
ERB18/21	
GQM18/21	
GRM32/43/55	
LLA18/21/31	
LLM21/31	ΔΤ≦130℃
GNM	
ERB32	

Recommended Conditions

	Pb-Sn S	Solder	Lead Free Solde	
	Infrared Reflow Vapor Reflo		Lead Free Solde	
Peak Temperature	230-250°C	230-240°C	240-260°C	
Atmosphere	Air	Air	Air or N2	

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu


Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

5. Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

⚠Caution

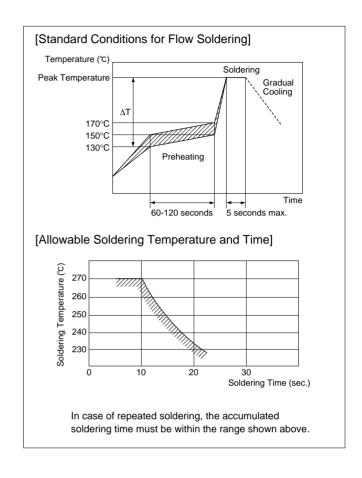
Continued from the preceding page.

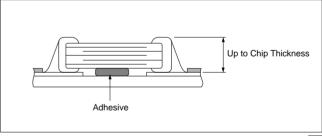
6. Flow Soldering

- Sudden heating of the chip results in thermal distortion causing cracked chips. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- When preheating, keep the temperature differential between solder temperature and chip surface temperature, ΔT , within the range shown in Table 2. The smaller the ΔT , the less stress on the chip. When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

Table 2


Part Number	Temperature Differential
GRM18/21/31	
LLL21/31	ΔT≦150°C
ERB18/21	Δ1≦150 C
GQM18/21	


Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N ₂

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu

Optimum Solder Amount for Flow Soldering

⚠Caution

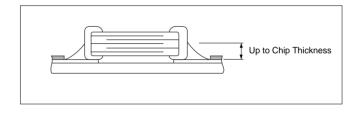
Continued from the preceding page.

7. Correction with a Soldering Iron

(1) For Chip Type Capacitors

 Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential, ΔT , within the range shown in Table 3. The smaller the ΔT , the less stress on the chip.

Table 3


Part Number	Temperature Differential	Peak Temperature	Atmosphere
GRM15/18/21/31 GJM15 LLL18/21/31 GQM18/21 ERB18/21	ΔΤ≦190℃	300°C max. 3 seconds max. / termination	Air
GRM32/43/55 GNM LLA18/21/31 LLM21/31 ERB32	ΔΤ≦130℃	270°C max. 3 seconds max. / termination	Air

*Applicable for both Pb-Sn and Lead Free Solder.

Ph-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

[Standard Conditions for Soldering Iron Temperature]

Preheating

60-120 seconds

Soldering

Gradual Cooling

Time

6 seconds max.

Temperature (°C)

Peak Temperature

170°C 150°C

(2) For Microstrip Types

- Solder 1mm away from the ribbon terminal base, being careful that the solder tip does not directly contact the capacitor. Preheating is unnecessary.
- Complete soldering within 3 seconds with a soldering tip less than 270°C in temperature.

8. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

Notice

■ Rating

Die Bonding/Wire Bonding (GMA Series)

- 1. Die Bonding of Capacitors
- •Use the following materials Braze alloy: Au-Sn (80/20) 300 to 320 degree C in N2 atmosphere
- (1) Control the temperature of the substrate so that it matches the temperature of the braze
- (2) Place braze alloy on substrate and place the capacitor on the alloy. Hold the capacitor and gently apply the load. Be sure to complete the operation in 1 minute.

- 2. Wire Bonding
- •Wire

Gold wire:

20 micro m (0.0008 inch), 25 micro m (0.001 inch) diameter

- Bonding
- (1) Thermocompression, ultrasonic ball bonding.
- (2) Required stage temperature: 200 to 250 degree C
- (3) Required wedge or capillary weight: 0.5N to 2N.
- (4) Bond the capacitor and base substrate or other devices with gold wire.

Notice

■ Soldering and Mounting

1. PCB Design

(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

Pattern Forms

	Placing Close to Chassis	Placing of Chip Components and Leaded Components	Placing of Leaded Components after Chip Component	Lateral Mounting
Incorrect	Chassis Solder (ground) Electrode Pattern	Lead Wire	Soldering Iron Lead Wire	
Correct	Solder Resist	Solder Resist	Solder Resist	Solder Resist

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

Notice

Continued from the preceding page.

(2) Land Dimensions

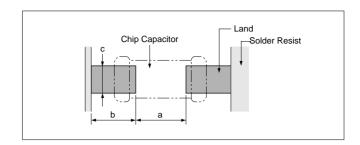


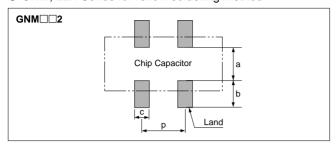
Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (LXW)	a	b	С
GRM18 GQM18	1.6×0.8	0.6—1.0	0.8-0.9	0.6-0.8
GRM21 GQM21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
GRM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4
LLL21	1.25×2.0	0.4-0.7	0.5-0.7	1.4-1.8
LLL31	1.6×3.2	0.6-1.0	0.8-0.9	2.6-2.8
ERB18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
ERB21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1

(in mm)

Table 2 Reflow Soldering Method

Dimensions Part Number	Dimensions (L×W)	а	b	С	
GRM02	0.4×0.2	0.16-0.2	0.12-0.18	0.2-0.23	
GRM03 GJM03	0.6×0.3	0.2-0.3	0.2-0.35	0.2-0.4	
GRM15 GJM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4-0.6	
GRM18 GQM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	
GRM21 GQM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1	
GRM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	
GRM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	
GRM43	4.5×3.2	3.0-3.5	1.2-1.4	2.3-3.0	
GRM55	5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	
LLL18	0.8×1.6	0.2-0.4	0.3-0.4	1.0-1.4	
LLL21	1.25×2.0	0.4-0.6	0.3-0.5	1.4-1.8	
LLL31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8	
ERB18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	
ERB21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1	
ERB32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	


(in mm)

Notice

Continued from the preceding page.

GNM, LLA Series for reflow soldering method

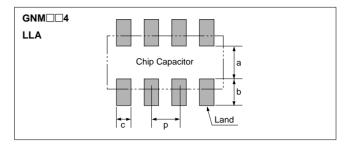


Table 3 GNM, LLA Series for Reflow Soldering Land Dimensions

Part Number	Dimensions (mm)					
	L	W	a	b	С	р
GNM1M2	1.37	1.0	0.45 to 0.5	0.5 to 0.55	0.3 to 0.35	0.64±0.1
GNM212	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.4 to 0.5	1.0±0.1
GNM214	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.25 to 0.35	0.5±0.05
GNM314	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8±0.05
LLA18	1.6	0.8	0.45 to 0.55	0.25 to 0.35	0.15 to 0.25	0.4
LLA21	2.0	1.25	0.7 to 0.8	0.4 to 0.6	0.2 to 0.3	0.5
LLA31	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8

LLM Series for reflow soldering method

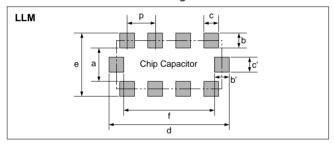
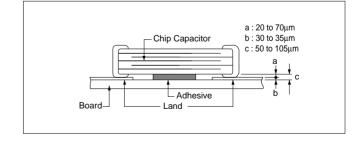
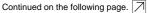


Table 4 LLM Series for Reflow Soldering Land Dimensions

Part Number	Dimensions (mm)						
Fait Number	а	b, b'	c, c'	d	е	f	р
LLM21	0.6 to 0.8	(0.3 to 0.5)	0.3	2.0 to 2.6	1.3 to 1.8	1.4 to 1.6	0.5
LLM31	1.0	(0.3 to 0.5)	0.4	3.2 to 3.6	1.6 to 2.0	2.6	0.8


b=(c-e)/2, b'=(d-f)/2

2. Adhesive Application


- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension c shown in the drawing below to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration.
- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000Pa ·s (500ps) min. (at 25°C)

Adhesive Coverage*

Part Number	Adhesive Coverage*
GRM18, GQM18	0.05mg min.
GRM21, LLL21, GQM21	0.1mg min.
GRM31, LLL31	0.15mg min.

*Nominal Value

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

Notice

Continued from the preceding page.

3. Adhesive Curing

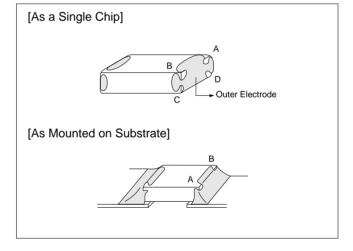
Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

4. Flux Application


- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently

cleaned. Use flux with a halide content of 0.2wt% max. But do not use strong acidic flux.

Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

5. Flow Soldering

 Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

(Reference Data 6. Thermal shock) (Reference Data 7. Solder heat resistance)

■ Others

1. Resin Coating

When selecting resin materials, select those with low contraction.

2. Circuit Design

These capacitors on this catalog are not safety recognized products

3. Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data here in are given in typical values, not guaranteed ratings.

Reference Data

1. Solderability

(1) Test Method

Subject the chip capacitor to the following conditions. Then apply flux (a ethanol solution of 25% rosin) to the chip and dip it in 230℃ eutectic solder for 2 seconds. Conditions:

Expose prepared at room temperature (for 6 months and 12 months, respectively)

Prepared at high temperature (for 100 hours at 85°C) Prepared left at high humidity (for 100 hours under 90%RH to 95%RH at 40℃)

(2) Test Samples

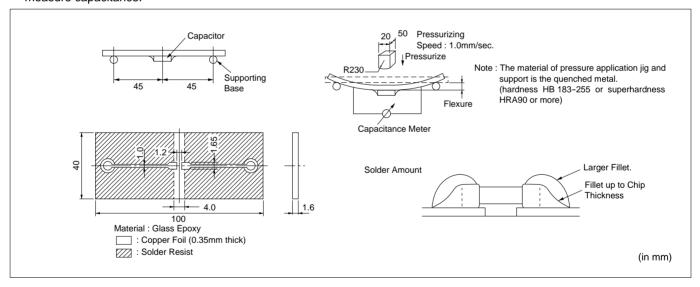
GRM21: Products for flow/reflow soldering.

(3) Acceptance Criteria

With a 60-power optical microscope, measure the surface area of the outer electrode that is covered with solder.

(4) Results

Refer to Table 1.


Table 1

Sample	Initial State	Prepared at Room Temperature		Prepared at High Temperature for	Prepared at High Humidity for 100 Hours at 90 to	
	Illitiai State	6 months	12 months	100 Hours at 85℃	95% RH and 40°C	
GRM21 for flow/reflow soldering	95 to 100%	95 to 100%	95%	90 to 95%	95%	

2. Board Bending Strength for Solder Fillet Height

(1) Test Method

Solder the chip capacitor to the test PCB with the amount of solder paste necessary to achieve the fillet heights. Then bend the PCB using the method illustrated and measure capacitance.

(2) Test Samples

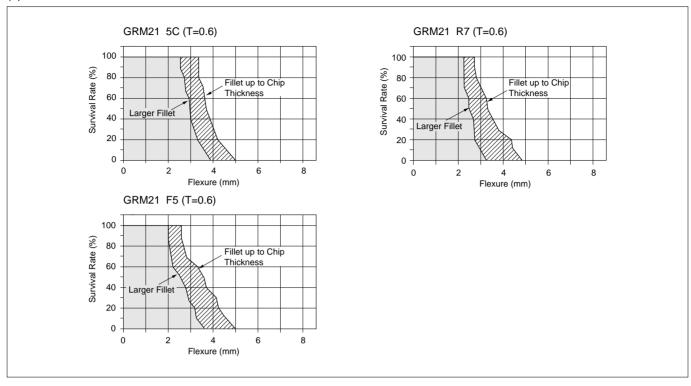
GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 2.

Table 2

Characteristics	Change in Capacitance
5C	Within ±5% or ±0.5pF, whichever is greater
R7	Within ±12.5%
F5	Within ±20%


sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Reference Data

Continued from the preceding page.

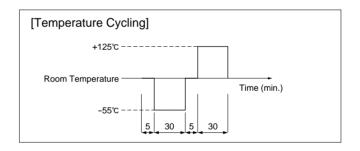
(4) Results

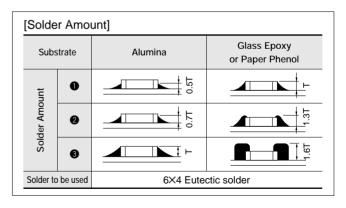
3. Temperature Cycling for Solder Fillet Height

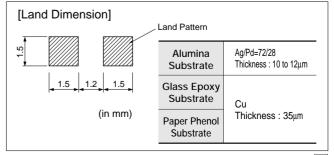
(1) Test Method

Solder the chips to the substrate various test fixtures using sufficient amounts of solder to achieve the required fillet height. Then subject the fixtures to the cycle illustrated below 200 times.

(1) Solder Amount


Alumina substrates are typically designed for reflow soldering.


Glass epoxy or paper phenol substrates are typically used for flow soldering.


② Material

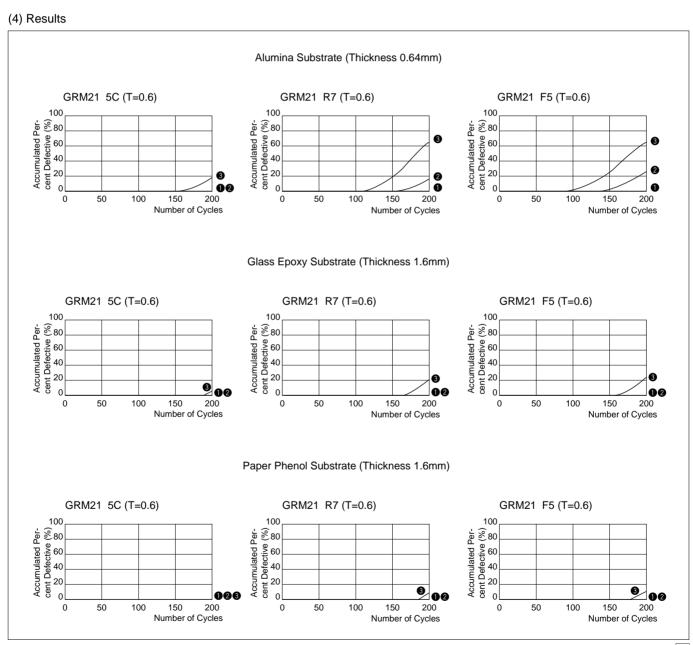
Alumina (Thickness: 0.64mm) Glass epoxy (Thickness: 1.64mm) Paper phenol (Thickness: 1.64mm)

(3) Land Dimension

Reference Data

Continued from the preceding page.

(2) Test Samples


GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

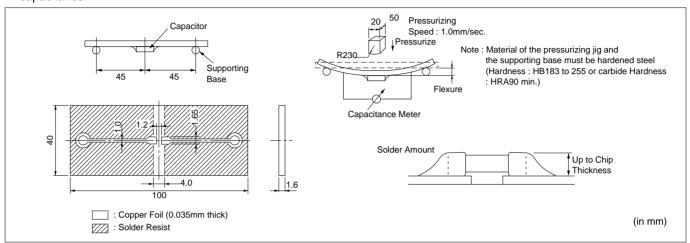
Products are determined to be defective if the change in capacitance has exceeded the values specified in Table 3.

Table 3

Characteristics	Change in Capacitance			
5C Within ±2.5% or ±0.25pF, whichever is gre				
R7	Within ±7.5%			
F5	Within ±20%			

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.


Reference Data

Continued from the preceding page.

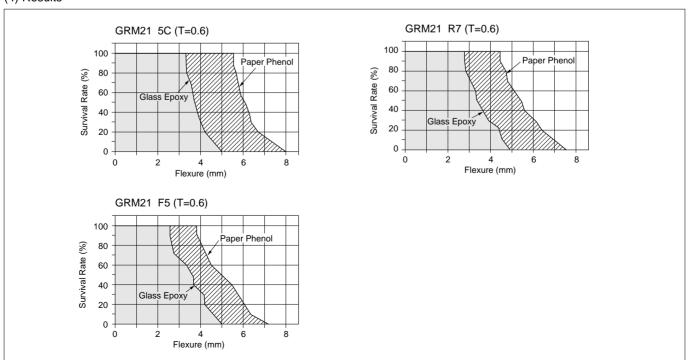
4. Board Bending Strength for Board Material

(1) Test Method

Solder the chip to the test board. Then bend the board using the method illustrated below, to measure capacitance.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm typical


(3) Acceptance Criteria

Products should be determined to be defective if the change in capacitance has exceeded the values specified in Table 4.

Table 4

Characteristics	Change in Capacitance
5C	Within ±5% or ±0.5pF, whichever is greater
R7	Within ±12.5%
F5	Within ±20%

(4) Results

Reference Data

Continued from the preceding page.

5. Break Strength

(1) Test Method

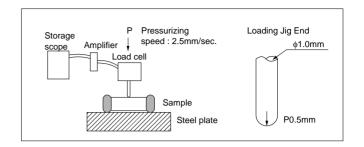
Place the chip on a steel plate as illustrated on the right. Increase load applied to a point near the center of the test sample.

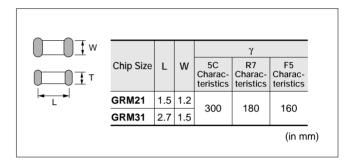
(2) Test Samples

GRM21 5C/R7/F5 Characteristics GRM31 5C/R7/F5 Characteristics

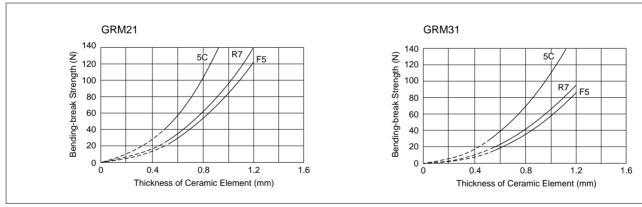
(3) Acceptance Criteria

Define the load that has caused the chip to break or crack, as the bending force.


(4) Explanation


Break strength, P, is proportionate to the square of the thickness of the ceramic element and is expressed as a curve of secondary degree.

The formula is:

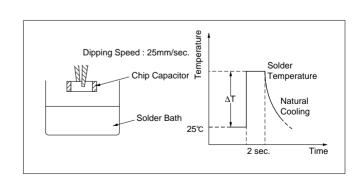

$$P = \frac{2\gamma WT^2}{3L} \quad (N)$$

W: Width of ceramic element (mm) T: Thickness of element (mm) L: Distance between fulcrums (mm) γ: Bending stress (N/mm²)

(5) Results

6. Thermal Shock

(1) Test method

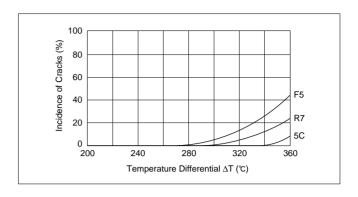

After applying flux (an ethanol solution of 25% rosin), dip the chip in a solder bath (6×4 eutectic solder) in accordance with the following conditions:

(2) Test samples

GRM21 5C/R7/F5 Characteristics T=0.6mm typical

(3) Acceptance criteria

Visually inspect the test sample with a 60-power optical microscope. Chips exhibiting breaks or cracks shall be determined to be defective.


sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Reference Data

Continued from the preceding page.

(4) Results

7. Solder Heat Resistance

(1) Test Method

1) Reflow soldering:

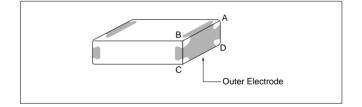
Apply about 300 µm of solder paste over the alumina substrate. After reflow soldering, remove the chip and check for leaching that may have occurred on the outer electrode.

2 Flow soldering:

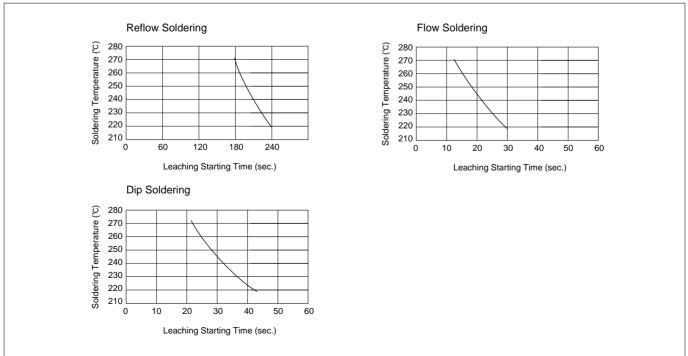
After dipping the test sample with a pair of tweezers in wave solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

(2) Test samples

GRM21: For flow/reflow soldering T=0.6mm


(3) Acceptance criteria

The starting time of leaching should be defined as the time when the outer electrode has lost 25% of the total edge length of A-B-C-D as illustrated:


3 Dip soldering:

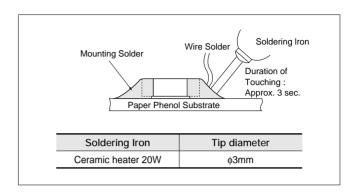
After dipping the test sample with a pair of tweezers in static solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

4 Flux to be used: An ethanol solution of 25% rosin.

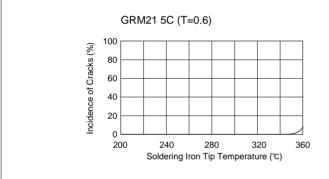
(4) Results

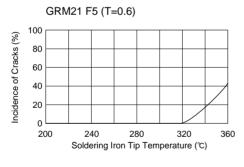
Reference Data

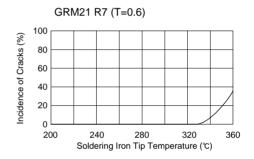
Continued from the preceding page.


8. Thermal Shock when Making Corrections with a Soldering Iron

(1) Test Method


Apply a soldering iron meeting the conditions below to the soldered joint of a chip that has been soldered to a paper phenol board, while supplying wire solder. (Note: the soldering iron tip should not directly touch the ceramic element of the chip.)

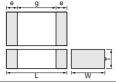

(2) Test Samples GRM21 5C/R7/F5 Characteristics T=0.6mm


(3) Acceptance Criteria for Defects Observe the appearance of the test sample with a 60-power optical microscope. Those units displaying any breaks or cracks are determined to be defective.

(4) Results

Chip Monolithic Ceramic Capacitors

Medium Voltage Low Dissipation Factor


■ Features

- 1. Murata's original internal electrode structure realizes high flash-over voltage.
- 2. A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realize good solderability.
- 4. Use the GRM21/31 type with flow or reflow soldering, and other types with reflow soldering only.
- 5. Low-loss and suitable for high frequency circuits

Applications

- 1. Ideal for use on high frequency pulse circuits such as snubber circuits for switching power supplies, DC-DC converters, ballasts (inverter fluorescent lamps), etc.
- 2. Ideal for use as the ballast in liquid crystal back lighting inverters.
- 3. Please contact our sales representatives or engineers before using our products for other applications not specified above.

Part Number	Dimensions (mm)						
Part Number	L	W	Т	e min.	g min.		
GRM21A	2.0 ±0.2	1.25 ±0.2	1.0 +0 0.3		0.7		
GRM31A	3.2 ±0.2	1.6 ±0.2	1.0 +0,-0.3		1.5*		
GRM31B	3.2 ±0.2	1.0 ±0.2	1.25 +0,-0.3				
GRM32A	3.2 ±0.2	2.5 ±0.2	1.0 +0,-0.3	0.3	1.5		
GRM32B	3.2 ±0.2	2.5 ±0.2	1.25 +0,-0.3				
GRM42A	4.5 ±0.3	2.0 ±0.2	1.0 +0,-0.3		29		
GRM42D	4.5 ±0.5	2.0 ±0.2	2.0 ±0.3		2.9		

^{*} GRM31A7U3D, GRM32A7U3D, GRM32B7U3D : 1.8mm min.

SL/U2J Characteristics

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM21A7U2E101JW31D	DC250	U2J (EIA)	100 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E151JW31D	DC250	U2J (EIA)	150 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E221JW31D	DC250	U2J (EIA)	220 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E331JW31D	DC250	U2J (EIA)	330 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E471JW31D	DC250	U2J (EIA)	470 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E681JW31D	DC250	U2J (EIA)	680 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E102JW31D	DC250	U2J (EIA)	1000 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E152JW31D	DC250	U2J (EIA)	1500 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E222JW31D	DC250	U2J (EIA)	2200 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM31A7U2E332JW31D	DC250	U2J (EIA)	3300 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2E472JW31D	DC250	U2J (EIA)	4700 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31B7U2E682JW31L	DC250	U2J (EIA)	6800 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31B7U2E103JW31L	DC250	U2J (EIA)	10000 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U2J100JW31D	DC630	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J150JW31D	DC630	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J220JW31D	DC630	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J330JW31D	DC630	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J470JW31D	DC630	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J680JW31D	DC630	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J101JW31D	DC630	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J151JW31D	DC630	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J221JW31D	DC630	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J331JW31D	DC630	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J471JW31D	DC630	U2J (EIA)	470 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J681JW31D	DC630	U2J (EIA)	680 ±5%	3.2	1.6	1.0	1.5	0.3 min.

Continued from the preceding page.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31A7U2J102JW31D	DC630	U2J (EIA)	1000 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM32A7U2J152JW31D	DC630	U2J (EIA)	1500 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM32A7U2J222JW31D	DC630	U2J (EIA)	2200 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM31A7U3A100JW31D	DC1000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A150JW31D	DC1000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A220JW31D	DC1000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A330JW31D	DC1000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A470JW31D	DC1000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A680JW31D	DC1000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A101JW31D	DC1000	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A151JW31D	DC1000	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A221JW31D	DC1000	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A331JW31D	DC1000	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31B7U3A471JW31L	DC1000	U2J (EIA)	470 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U3D100JW31D	DC2000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D120JW31D	DC2000	U2J (EIA)	12 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D150JW31D	DC2000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D180JW31D	DC2000	U2J (EIA)	18 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D220JW31D	DC2000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D270JW31D	DC2000	U2J (EIA)	27 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D330JW31D	DC2000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D390JW31D	DC2000	U2J (EIA)	39 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D470JW31D	DC2000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D560JW31D	DC2000	U2J (EIA)	56 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D680JW31D	DC2000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM32A7U3D820JW31D	DC2000	U2J (EIA)	82 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D101JW31D	DC2000	U2J (EIA)	100 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D121JW31D	DC2000	U2J (EIA)	120 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D151JW31D	DC2000	U2J (EIA)	150 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32B7U3D181JW31L	DC2000	U2J (EIA)	180 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM32B7U3D221JW31L	DC2000	U2J (EIA)	220 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM42D1X3F100JY02L	DC3150	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F120JY02L	DC3150	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F150JY02L	DC3150	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F180JY02L	DC3150	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F220JY02L	DC3150	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42A7U3F270JW31L	DC3150	U2J (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F330JW31L	DC3150	U2J (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F390JW31L	DC3150	U2J (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F470JW31L	DC3150	U2J (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F560JW31L	DC3150	U2J (EIA)	56 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F680JW31L	DC3150	U2J (EIA)	68 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F820JW31L	DC3150	U2J (EIA)	82 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F101JW31L	DC3150	U2J (EIA)	100 ±5%	4.5	2.0	1.0	2.9	0.3 min.

Application Specific Products, C0G Characteristics

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM42A5C3F050DW01L	DC3150	C0G (EIA)	5.0 ±0.5pF	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F100JW01L	DC3150	C0G (EIA)	10 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F120JW01L	DC3150	C0G (EIA)	12 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F150JW01L	DC3150	C0G (EIA)	15 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F180JW01L	DC3150	C0G (EIA)	18 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F220JW01L	DC3150	C0G (EIA)	22 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F270JW01L	DC3150	C0G (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F330JW01L	DC3150	C0G (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F390JW01L	DC3150	C0G (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F470JW01L	DC3150	C0G (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.

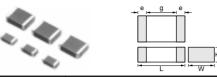
Please contact us in case that the COG char. DC3150V items are considered to use for the application which is not LCD back lighting inverters circuit.

No.	Ite	em	Specifications	Test Method
1	Operating Temperatu	ure Range	−55 to +125°C	
2	Appearar		No defects or abnormalities	Visual inspection
3	Dimensio		Within the specified dimension	Using calipers
4	Dielectric	Dielectric Strength No defects or abnormalities		No failure should be observed when voltage in Table is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA. Rated voltage DC250V 200% of the rated voltage DC630V 150% of the rated voltage DC1kV, DC2kV 120% of the rated voltage DC3.15kV DC4095V
5	Insulation F	Resistance	More than 10,000M Ω	The insulation resistance should be measured with DC500±50V (DC250±25V in case of rated voltage : DC250V) and within 60±5 sec. of charging.
6	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at 20°C at the frequency and voltage shown as follows.
7	Q		C0G/U2J char. : 1,000 min. SL char. : 400+20C*1 min.	Capacitance Frequency Voltage C<1,000pF
8	Capacitar Temperat Character	ure	Temp. Coefficient COG char.: 0±30ppm/°C (Temp. Range: +25 to +125°C) 0+30, -72ppm/°C (Temp. Range: -55 to +25°C) U2J char.: -750±120 ppm/°C (Temp. Range: +25 to +125°C) -750+120, -347 ppm/°C (Temp. Range: -55 to +25°C) SL char.: +350 to -1000 ppm/°C (Temp. Range: +20 to +85°C)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (SL char.: +20 to +85°C) the capacitance should be within the specified tolerance for the temperature coefficient. Step Temperature (°C) 1 25±2 (20±2 for SL char.) 2 Min. Operating Temp.±3 3 25±2 (20±2 for SL char.) 4 Max. Operating Temp.±2 5 25±2 (20±2 for SL char.)
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig. 1
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion
10	Vibration Resistance	Q	C0G/U2J char. : 1,000 min. SL char. : 400+20C*1 min.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board

^{*1 &}quot;C" expresses nominal capacitance value (pF).

No.	Ite	em	Specifications	Test Method
11	2 Solderability of		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize (in mm) Fig. 3 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec.
	Terminati	on	and continuously.	Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder
13	Appearance Capacitance Change Resistance to Soldering Capacitance Change		No marking defects Within ±2.5% C0G/U2J char.: 1,000 min. SL char.: 400+20C*2 min.	Preheat the capacitor at 120 to 150°C* for 1 min. Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at *¹room condition for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s
	Heat	I.R.	More than $10,000M\Omega$	*Preheating for more than 3.2X2.5mm
			INOTE that 10,000Ms2	Step Temperature Time 1 100 to 120℃ 1 min.
		Dielectric Strength	In accordance with item No.4	2 170 to 200°C 1 min.
		Appearance Capacitance Change	No marking defects Within ±2.5%	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table.
		-	C0G char. : 1,000 min.	Let sit for 24±2 hrs. at *1room condition, then measure.
		Q	U2J char. : 500 min. SL char. : 400+20C* ² min.	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3
	Temperature	I.R.	More than 10,000MΩ	2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3
14	Cycle	Dielectric Strength	In accordance with item No.4	4 Room Temp. 2 to 3 Solder resist Glass Epoxy Board Fig. 4
		Appearance	No marking defects	
	Library Caller	Capacitance Change	Within ±5.0%	Let the capacitor sit at 40±2°c and relative humidity of 90 to 95%
15	Humidity (Steady State)	Q	C0G/U2J char. : 350 min. SL char. : 275+5/2C* ² min.	for 500 ^{±2} / ₀ hrs. Remove and let sit for 24±2 hrs. at *1 room condition, then
	,	I.R.	More than 1,000M Ω	measure.
		Dielectric Strength	In accordance with item No.4	
		Appearance	No marking defects	
		Capacitance Change	Within ±3.0%	Apply 120% of the rated voltage for 1,000 ^{±-48} hrs. at maximum
16	Life	Q	C0G/U2J char. : 350 min.	operating temperature ±3°C. Remove and let sit for 24±2 hrs. at *1room condition, then
			SL char. : 275+5/2C*2 min.	measure.
		I.R. Dielectric	More than 1,000MΩ In accordance with item No.4	The charge/discharge current is less than 50mA.
4 ::=		Strength	in accordance with item No.4	

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa *2 "C" expresses nominal capacitance value (pF).


Medium Voltage High Capacitance for General-Use

■ Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 2. Sn-plated external electrodes realizes good solderability.
- 3. Use the GRM18/21/31 types with flow or reflow soldering, and other types with reflow soldering only.

■ Applications

- 1. Ideal for use as a hot-cold coupling for DC-DC converter.
- 2. Ideal for use on line filters and ringer detectors for telephones, facsimiles and modems.
- 3. Ideal for use on diode-snubber circuits for switching power supplies.

Part Number		Din	nensions (mm	1)	
Fait Number	L	W	T	е	g min.
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.4
GRM21A	2.0 ±0.2	1.25 ±0.2	1.0 +0,-0.3		0.7
GRM21B	2.0 ±0.2	1.25 ±0.2	1.25 ±0.2		0.7
GRM31B	3.2 ±0.2	1.6 ±0.2	1.25 +0,-0.3		
GRM31C	3.2 ±0.2	1.0 ±0.2	1.6 ±0.2		12
GRM32Q	3.2 ±0.3	2.5 ±0.2	1.5 +0,-0.3	0.3 min.	1.2
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 +0,-0.3		
GRM43Q	4.5 ±0.4	3.2 ±0.3	1.5 +0,-0.3		22
GRM43D	4.5 ±0.4	3.2 ±0.3	2.0 + 0, -0.3		2.2
GRM55D	5.7 ±0.4	5.0 ±0.4	2.0 +0,-0.3		3.2

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM188R72E221KW07D	DC250	X7R (EIA)	220pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E331KW07D	DC250	X7R (EIA)	330pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E471KW07D	DC250	X7R (EIA)	470pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E681KW07D	DC250	X7R (EIA)	680pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E102KW07D	DC250	X7R (EIA)	1000pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E102KW01D	DC250	X7R (EIA)	1000pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E152KW07D	DC250	X7R (EIA)	1500pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E152KW01D	DC250	X7R (EIA)	1500pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E222KW07D	DC250	X7R (EIA)	2200pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E222KW01D	DC250	X7R (EIA)	2200pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E332KW01D	DC250	X7R (EIA)	3300pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E472KW01D	DC250	X7R (EIA)	4700pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E682KW01D	DC250	X7R (EIA)	6800pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21BR72E103KW03L	DC250	X7R (EIA)	10000pF ±10%	2.0	1.25	1.25	0.7	0.3 min.
GRM31BR72E153KW01L	DC250	X7R (EIA)	15000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72E223KW01L	DC250	X7R (EIA)	22000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72E333KW03L	DC250	X7R (EIA)	33000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31CR72E473KW03L	DC250	X7R (EIA)	47000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31BR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM31CR72E104KW03L	DC250	X7R (EIA)	0.10μF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32DR72E104KW01L	DC250	X7R (EIA)	0.10μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72E154KW01L	DC250	X7R (EIA)	0.15μF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM32DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM43DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72E105KW01L	DC250	X7R (EIA)	1.0μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR72J102KW01L	DC630	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J152KW01L	DC630	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.

110

Continued from the preceding page.

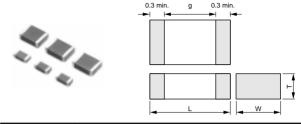
Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31BR72J222KW01L	DC630	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J332KW01L	DC630	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J472KW01L	DC630	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J682KW01L	DC630	X7R (EIA)	6800pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J103KW01L	DC630	X7R (EIA)	10000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72J153KW03L	DC630	X7R (EIA)	15000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72J223KW01L	DC630	X7R (EIA)	22000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR72J333KW01L	DC630	X7R (EIA)	33000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR72J473KW01L	DC630	X7R (EIA)	47000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72J683KW01L	DC630	X7R (EIA)	68000pF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM43DR72J104KW01L	DC630	X7R (EIA)	0.10μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72J154KW01L	DC630	X7R (EIA)	0.15μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72J224KW01L	DC630	X7R (EIA)	0.22μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR73A102KW01L	DC1000	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A152KW01L	DC1000	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A222KW01L	DC1000	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A332KW01L	DC1000	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A472KW01L	DC1000	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR73A682KW01L	DC1000	X7R (EIA)	6800pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32QR73A103KW01L	DC1000	X7R (EIA)	10000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR73A153KW01L	DC1000	X7R (EIA)	15000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR73A223KW01L	DC1000	X7R (EIA)	22000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR73A333KW01L	DC1000	X7R (EIA)	33000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR73A473KW01L	DC1000	X7R (EIA)	47000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR73A104KW01L	DC1000	X7R (EIA)	0.10μF ±10%	5.7	5.0	2.0	3.2	0.3 min.

No.	Item		Specifications	Test Method
1	Operating Temperature R	ange	_55 to +125°C	_
2	Appearance	ago	No defects or abnormalities	Visual inspection
3	Dimensions		Within the specified dimensions	Using calipers
4	Dielectric Stre	ength	No defects or abnormalities	No failure should be observed when 150% of the rated voltage (200% of the rated voltage in case of rated voltage: DC250V, 120% of the rated voltage in case of rated voltage: DC1kV) is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.
5	Insulation Resist(I.R.)	tance	C≥0.01μF : More than 100MΩ • μF C<0.01μF : More than 10,000MΩ	The insulation resistance should be measured with DC500±50V (DC250±50V in case of rated voltage : DC250V) and within 60±5 sec. of charging.
6	Capacitance		Within the specified tolerance	The capacitance/D.F. should be measured at 25℃ at a frequency of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.) •Pretreatment
7	Dissipation Factor (D.F.)		0.025 max.	Perform a heat treatment at 150 ^{±o} _{1o} ℃ for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
8	Capacitance Temperature Characteristics		Cap. Change Within ±15% (Temp. Range : −55 to +125°C)	The range of capacitance change compared with the 25°C value within -55 to $+125$ °C should be within the specified range. •Pretreatment Perform a heat treatment at 150^{+0}_{-10} °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *room condition.
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N (5N: Size 1.6×0.8mm only), 10±1s Speed: 1.0mm/s Glass Epoxy Board
	Anne		No defects or apparmalities	Fig. 1 Solder the capacitor to the test jig (glass epoxy board).
10	Vibration Resistance			The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.).
				Glass Epoxy Board
11	Deflection		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize Pressurize Flexure=1 Capacitance meter (in mm) Fig. 3

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Vo.	Ite	em	Specifications		Test Method			
12	Solderabi Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder				
		Appearance	No marking defects	Preheat the ca	apacitor at 120 to 150℃* for 1 r	min.		
		Capacitance Change	Within ±10%	Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s				
	5	D.F.	0.025 max.	Pretreatment				
13	Resistance to Soldering Heat	I.R.	C≥0.01μF : More than 100MΩ • μF C<0.01μF : More than 10,000MΩ		at treatment at $150^{+}_{-1}^{\circ}$ °C for 62 hrs. at *room condition.	60±5 min. and then		
		Dielectric Strength	In accordance with item No.4	*Preheating fo	or more than 3.2×2.5mm Temperature 100 to 120℃ 170 to 200℃	Time 1 min. 1 min.		
		Appearance	No marking defects		tor to the supporting jig (glass	epoxy board) shown		
		Capacitance Change	Within ±7.5%		a eutectic solder. cycles according to the 4 heat able.	treatments listed in		
		D.F.	0.025 max.		2 hrs. at *room condition, then			
		I.R.	C≧0.01µF : More than 100MΩ • µF	Step 1	Temperature (°C) Min. Operating Temp.±3	Time (min.) 30±3		
			C<0.01μF : More than 10,000MΩ	2	Room Temp.	2 to 3		
				3 4	Max. Operating Temp.±2 Room Temp.	30±3 2 to 3		
		Dielectric Strength	In accordance with item No.4	Solder resist Glass Epoxy Board Fig. 4				
		Appearance	No marking defects					
		Capacitance Change	Within ±15%	for 500 ±24 hr		•		
15	Humidity (Steady	D.F.	0.05 max.	measure.	et sit for 24±2 hrs. at *room co	ondition, then		
	State)	I.R.	C≥0.01μF : More than $10MΩ • μF$ $C<0.01μF$: More than $1,000MΩ$		t at treatment at 150 ⁺ ₁8°C for 6 2 hrs. at *room condition.	60±5 min. and then		
		Dielectric Strength	In accordance with item No.4	ICT SICTOR Z=	z ms. at 100m condition.			
		Appearance Capacitance Change	No marking defects Within ±15% (rated voltage : DC250V, DC630V) Within ±20% (rated voltage : DC1kV)	Apply 120% of the rated voltage (150% of the rated voltage in case of rated voltage : DC250V, 110% of the rated voltage in case of rated voltage : DC1kV) for 1,000 ±48 hrs. at maximum				
16	Life	D.F.	0.05 max.		perature ±3℃. Remove and le	t sit for 24 ±2 hrs. at		
10	Lile	I.R.	C≥0.01μF : More than 10MΩ • μF C<0.01μF : More than 1,000MΩ	*room condition, then measure. The charge/discharge current is less than 50mA. •Pretreatment				
		Dielectric Strength	In accordance with item No.4		Itage for 60±5 min. at test tem let sit for 24±2 hrs. at *room c			
		Suchgui						
		Appearance	No marking defects					
	Humidity Loading		No marking defects Within ±15%	95% for 500±		•		
17	Loading (Application :	Appearance Capacitance		95% for 500±		•		
17	Loading	Appearance Capacitance Change	Within ±15%	95% for 500 ± Remove and I measure. •Pretreatmen Apply test vo	:26 hrs. et sit for 24±2 hrs. at *room co	ondition, then perature.		

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa



Only for Information Devices/Tip & Ring

■ Features

- 1. These items are designed specifically for telecommunication devices (IEEE802.3) in Ethernet LAN.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- 5. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Part Number	Dimensions (mm)					
Part Number	L	W	T	g min.		
GR442Q	4.5 ±0.3 2.0 ±0.2		1.5 +0, -0.3			
GR443D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	2.5		
GR443Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3			

Applications

Ideal for use on telecommunication devices in Ethernet LAN

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR442QR73D101KW01L	DC2000	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D121KW01L	DC2000	X7R (EIA)	120 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D151KW01L	DC2000	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D181KW01L	DC2000	X7R (EIA)	180 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D221KW01L	DC2000	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D271KW01L	DC2000	X7R (EIA)	270 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D331KW01L	DC2000	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D391KW01L	DC2000	X7R (EIA)	390 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D471KW01L	DC2000	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D561KW01L	DC2000	X7R (EIA)	560 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D681KW01L	DC2000	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D821KW01L	DC2000	X7R (EIA)	820 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D102KW01L	DC2000	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D122KW01L	DC2000	X7R (EIA)	1200 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D152KW01L	DC2000	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR443QR73D182KW01L	DC2000	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D222KW01L	DC2000	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D272KW01L	DC2000	X7R (EIA)	2700 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D332KW01L	DC2000	X7R (EIA)	3300 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D392KW01L	DC2000	X7R (EIA)	3900 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443DR73D472KW01L	DC2000	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

No.	Ite	em	Specifications		Test Method		
1	Operating Temperatu	ıre Range	−55 to +125°C		_		
2	Appearan	nce	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	Dielectric Strength		No defects or abnormalities	between the termina is less than 50mA.	observed when voltage in table is applied ations, provided the charge/discharge current		
		ŭ		Rated voltage	Test Voltage Time 120% of the rated voltage 60±1 sec.		
				DC2kV	AC1500V(r.m.s.) 60±1 sec.		
5	Pulse Vol	tage	No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of alterna (5 impulse for each The interval between Applied Voltage: 2.5	n impulse is 60 sec.		
6	Insulation F (I.R.)	Resistance	More than $6{,}000M\Omega$	The insulation resist and within 60±5 sec	ance should be measured with DC500±50V c. of charging.		
7	Capacitar	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at a frequof 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.) •Pretreatment			
8	Dissipation Factor (D.F.)		0.025 max.	Perform a heat treatment at 150^{+0}_{-10} °C for 60 ± 5 min. and ther let sit for 24 ± 2 hrs. at *room condition.			
9	Capacitance Temperature Characteristics		Cap. Change within ±15% (Temp. Range : −55 to +125℃)	The range of capacitance change compared with the 25°C value within the specified range. •Pretreatment Perform a heat treatment at 150 ± 00 ℃ for 60±5 min. and then let sit for 24±2 hrs. at *room condition.			
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	in Fig. 1 using a euton Then apply 10N force The soldering should reflow method and s	to the testing jig (glass epoxy board) shown ectic solder. the in the direction of the arrow. It is the arrow. It is the direction of the arrow. It is the arrow. It is the direction of the arrow. It is the ar		
				Fig. 1			
		Appearance	No defects or abnormalities		to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance	•	d be subjected to a simple harmonic motion ude of 1.5mm, the frequency being varied		
11	Vibration Resistance	D.F.	0.025 max.	uniformly between the frequency range, from traversed in approximation of 2 hrs. (total of 6 hrs.).	the approximate limits of 10 and 55Hz. The im 10 to 55Hz and return to 10Hz, should be mately 1 min. This motion should be applied in each 3 mutually perpendicular directions Solder resist Lass Epoxy Board		

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

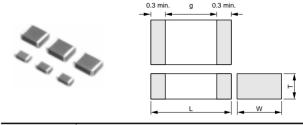
7	Continued fr	rom the pred	eding page.				
No.	Ite	em	Specifications	Test Method			
12	Deflection		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
				Fig. 3			
13	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder			
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in solder solution at 260±5°C for 10±1			
	Ch	Capacitance Change	Within ±10%	sec. Let sit at *room condition for 24±2 hrs., then measure.			
		D.F.	0.025 max.	Immersing speed : 25±2.5mm/sPretreatment			
14	Resistance to Soldering	I.R.	More than 1,000M Ω	Perform a heat treatment at 150 [±] ₁ ^o ^o C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.			
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.			
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table.			
		Capacitance Change	Within ±15%				
		D.F.	0.05 max.	Let sit for 24±2 hrs. at *room condition, then measure.			
		I.R.	More than $3{,}000\text{M}\Omega$	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3			
				2 Room Temp. 2 to 3			
				3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3			
15	Temperature Cycle	Dielectric Strength	In accordance with item No.4	Pretreatment Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition. Solder resist Glass Epoxy Board Fig. 4			
		Appearance	No marking defects	Let the conscitor sit at 40 L000 and relative beautifue to 200 consci			
	Humidity	Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±2°d hrs. Remove and let sit for 24±2 hrs. at *room condition, then			
16	(Steady	D.F.	0.05 max.	measure.			
	State)	I.R.	More than 1,000M Ω	•Pretreatment Perform a heat treatment at 150 [±] ₁ % [∞] for 60±5 min. and then			
		Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at *room condition.			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page.

No.	. Item		Specifications	Test Method
		Appearance	No marking defects	
		Capacitance Change	Within ±20%	Apply 110% of the rated voltage for $1,000^{\pm 4}$ 8 hrs. at maximum operating temperature $\pm 3^{\circ}$ C. Remove and let sit for 24 ± 2 hrs. at *room condition, then measure.
17	Life	D.F.	0.05 max.	The charge/discharge current is less than 50mA.
		I.R.	More than $2{,}000M\Omega$	Pretreatment Apply test voltage for 60±5 min. at test temperature.
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa


Only for Camera Flash Circuit

■ Features

- 1. Suitable for the trigger of the flash circuit, because real capacitance is stable during operating voltage.
- 2. The thin type fit for thinner camera.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. For flow and reflow soldering

■ Applications

For strobe circuit

Doub Number	Dimensions (mm)						
Part Number	L	W	Т	g min.			
GR731A			1.0 +0, -0.3				
GR731B	3.2 ±0.2	1.6 ±0.2	1.25 +0, -0.3	1.2			
GR731C			1.6 ±0.2				

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR731AW0BB103KW01D	DC350	-	10000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731AW0BB153KW01D	DC350	-	15000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731BW0BB223KW01L	DC350	-	22000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731BW0BB333KW01L	DC350	-	33000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731CW0BB473KW03L	DC350	-	47000 ±10%	3.2	1.6	1.6	1.2	0.3 min.

118

No.	Ite	em	Specifications	Test Method		
1	Operating Temperatu	ıro Dango	-55 to +125℃	_		
2	Appearar		No defects or abnormalities	Visual inspection		
3	Dimensio			Using calipers		
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when DC500V is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.		
5	Insulation F (I.R.)	Resistance	C≥0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	The insulation resistance should be measured with DC250±50V and within 60±5 sec. of charging.		
6	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at a frequency of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.)		
7	Dissipation Factor (D		0.025 max.	Pretreatment Perform a heat treatment at 150 [±] 0 ℃ for 60±5 min. and then let sit for 24±2 hrs. at *room condition.		
8	Capacitar Temperat Character	ure	Cap. Change Within ±10% (Apply DC350V bias) Within ±23 % (No DC bias)	The range of capacitance change compared with the 25°C value within -55 to $+125$ °C should be within the specified range. •Pretreatment Perform a heat treatment at $150 \stackrel{+}{=} ?_{O}$ °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *room condition.		
9	9 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. ToN, 10±1s Speed: 1.0mm/s Glass Epoxy Board		
		Appearance	No defects or abnormalities	Fig. 1 Solder the capacitor to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied		
10	Vibration Resistance	D.F.	0.025 max.	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board		
			No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown		
11	Deflection	n	Dimension (mm) C d C d C C C C C C	Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Pressurizing speed: 1.0mm/s speed: 1.0mm/s Fig. 3 Fig. 3		
12	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder		

muRata

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

<u> </u>	Continued fr	om the prec	eding page.	1
No.	Ite	em	Specifications	Test Method
13	Resistance to Soldering Heat	Appearance Capacitance Change D.F. I.R. Dielectric Strength	No marking defects $Within \pm 10\%$ $0.025 \ max.$ $C \ge 0.01 \mu F: \ More \ than \ 100 M \Omega \bullet \mu F$ $C < 0.01 \mu F: \ More \ than \ 10,000 M \Omega$ In accordance with item No.4	Preheat the capacitor at 120 to 150°C* for 1 min. Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure. •Immersing speed : 25±2.5mm/s •Pretreatment Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition. *Preheating for more than 3.2×2.5mm Step Temperature Time 1 100 to 120°C 1 min.
		Appoarance	No marking defects	2 170 to 200℃ 1 min. Fix the capacitor to the supporting jig (glass epoxy board) shown
		Appearance Capacitance Change	Within ±7.5%	in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table.
		D.F.	0.025 max.	Let sit for 24±2 hrs. at *room condition, then measure.
		I.R.	C≧0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3
14	Temperature Cycle	Dielectric Strength	In accordance with item No.4	2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 • Pretreatment Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition. Solder resist Cu Glass Epoxy Board Fig. 4
		Appearance Capacitance	No marking defects	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95%
	Humidity	Change D.F.	Within ±15% 0.05 max.	for 500 ±24 hrs. Remove and let sit for 24±2 hrs. at *room condition, then
15	(Steady State)	I.R.	C≥0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	measure. •Pretreatment Perform a heat treatment at 150±₁8℃ for 60±5 min. and then
		Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at *room condition.
		Appearance	No marking defects	
		Capacitance Change	Within ±15%	Apply DC350V for 1,000 ± ⁴ 8 hrs. at maximum operating temperature ±3 °C. Remove and let sit for 24 ± 2 hrs. at *room
14	Life	D.F.	0.05 max.	condition, then measure. The charge/discharge current is less than 50mA.
16	Lile	I.R.	C≥0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	Pretreatment Apply test voltage for 60±5 min. at test temperature.
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.
		Appearance	No marking defects	
		Capacitance Change	Within ±15%	Apply the rated voltage at 40±2℃ and relative humidity of 90 to 95% for 500±26 hrs.
17	Humidity	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at *room condition, then
17	Loading	I.R.	C≥0.01μF: More than 10M Ω • μF C<0.01μF: More than 1,000M Ω	measure. •Pretreatment Apply test voltage for 60±5 min. at test temperature.
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

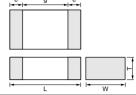
05.12.14

Chip Monolithic Ceramic Capacitors

AC250V(r.m.s.) Type (Which Meet Japanese Law)

■ Features

- 1. Chip monolithic ceramic capacitor for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- 5. Capacitance 0.01 to 0.1uF for connecting lines and 470 to 4700pF for connecting lines to earth.


■ Applications

Noise suppression filters for switching power supplies, telephones, facsimiles, modems.

■ Reference standard

GA2 series obtains no safety approval. This series is based on JIS C 5102, JIS C 5150, and the standards of the electrical appliance and material safety law of Japan (separated table 4).

Part Number	Dimensions (mm)						
Part Number	L	W	Т	e min.	g min.		
GA242Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3				
GA243D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	0.3	2.5		
GA243Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3	0.3			
GA255D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3		3.2		

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA242QR7E2471MW01L	AC250 (r.m.s.)	X7R (EIA)	470pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA242QR7E2102MW01L	AC250 (r.m.s.)	X7R (EIA)	1000pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA243QR7E2222MW01L	AC250 (r.m.s.)	X7R (EIA)	2200pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2332MW01L	AC250 (r.m.s.)	X7R (EIA)	3300pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2472MW01L	AC250 (r.m.s.)	X7R (EIA)	4700pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA243QR7E2103MW01L	AC250 (r.m.s.)	X7R (EIA)	10000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2223MW01L	AC250 (r.m.s.)	X7R (EIA)	22000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2473MW01L	AC250 (r.m.s.)	X7R (EIA)	47000pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA255DR7E2104MW01L	AC250 (r.m.s.)	X7R (EIA)	0.10μF ±20%	5.7	5.0	2.0	3.2	0.3 min.

No.	Ite	em	Specifications	Test Method			
1	Operating Temperatu	ıre Range	−55 to +125°C				
2	Appearan	ice	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Nominal Capacitance Test voltage C≥10,000pF AC575V(r.m.s.) C<10,000pF AC1500V(r.m.s.)			
5	Insulation F (I.R.)	Resistance	More than $2{,}000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.			
6	Capacitar	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25℃ at a frequency			
7	Dissipation Factor (D		0.025 max.	of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.) •Pretreatment Perform a heat treatment at 150 [±] ₁₈ °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.			
8	Capacitan Temperati Character	ure	Cap. Change Within ±15% (Temp. Range : −55 to +125°C)	The range of capacitance change compared with the 25°C valuwithin −55 to +125°C should be within the specified range. •Pretreatment Perform a heat treatment at 150± ₁ 6°C for 60±5 min. and there let sit for 24±2 hrs. at *room condition.			
9	Discharge Test (Application: Nominal Capacitance C<10,000pF)	Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from the capacitor (Cd) charged at DC voltage of specified. $\begin{array}{c} R3 \\ \hline \\ $			
10	Adhesive Strength of Termination		No removal of the terminations or other defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig. 1			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).			
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied			
11	Vibration Resistance	D.F.	0.025 max.	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page

\overline{A}	Continued fr	om the prec	eding page.									
No.	Ite	em		S	pecification	s			Test Method			
			No cracking or	marking de	efects should	d occur.		in Fig. 2 using direction show	pacitor to the testing jig (glass a eutectic solder. Then apply on in Fig. 3. The soldering sho	a force in the uld be done either		
					-	φ4.5			using the reflow method and nat the soldering is uniform an . 20 50 Pressurizing speed:1.0m	d free of defects such		
12	Deflection	n		-	100	t: 1.6			Pressurize	iiivs		
			L×W (mm) 4.5×2.0	a 3.5	Dimens b 7.0	ion (mm) c 2.4	d		Capacitance meter	≔1 (in mm)		
			4.5×3.2	3.5	7.0	3.7	1.0			(
			5.7×5.0	4.5	8.0 Fig. 2	5.6			Fig. 3			
13	Solderabi Terminati		75% of the termi	nations are	-	ed evenly and	d continuously.	rosin (JIS-K-5 Immerse in so Immersing spo	capacitor in a solution of ethan 902) (25% rosin in weight proposed solution for 2±0.5 sec. seed : 25±2.5mm/s er : 245±5°C Lead Free Solde 235±5°C H60A or H63A E	portion). er (Sn-3.0Ag-0.5Cu)		
		Appearance	No marking def	ects								
		Capacitance Change	Within ±15%	ithin ±15%					The capacitor should be subjected to 40±2°C, relative humidity of			
14	Humidity Insulation	D.F.	0.05 max.					90 to 98% for hrs. until 5 cyc	8 hrs., and then removed in *i	room condition for 16		
		I.R.	More than 1,00	More than 1,000M Ω					des.			
		Dielectric Strength	In accordance with item No.4									
		Appearance	No marking defects					Preheat the ca	apacitor as table.			
		Capacitance Change	Within ±10%	Within ±10%				sec. Let sit at	Immerse the capacitor in solder solution at 260±5°c for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure. •Immersing speed : 25±2.5mm/s			
	Resistance	D.F.	0.025 max.					Pretreatment				
15	to Soldering Heat	I.R.	More than 2,00	0ΜΩ					Perform a heat treatment at 150 [±] ₋₁ 0°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition. *Preheating			
		Dielectric Strength	In accordance v	with item N	0.4					Time		
		Suengui						1	100 to 120℃ 170 to 200℃	1 min.		
		Annogranas	No marking def	ooto				Eix the capaci	tor to the supporting jig (glass	1 min.		
		Appearance Capacitance Change	No marking def Within ±15%	ecis				in Fig. 4 using Perform the 5	a eutectic solder. cycles according to the 4 hea			
		D.F.	0.05 max.					the following t Let sit for 24±	able. 2 hrs. at *room condition, ther	n measure.		
		I.R.	More than 2,00	 0MΩ				Step	Temperature (℃)	Time (min.)		
			, , , , ,					1	Min. Operating Temp.±3	30±3		
								3	Room Temp. Max. Operating Temp.±2	2 to 3 30±3		
	Temperature							4	Room Temp.	2 to 3		
16	Cycle	Dielectric Strength	In accordance v	with item N	0.4				at treatment at 150 [±] ₁ %°C for 2 hrs. at *room condition.	60±5 min. and then		
		Sugn							TZZ	er resist		
									Fig. 4			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

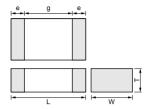
Continued from the preceding page.

No.	Ite	em	Specifications	Test Method
		Appearance	No marking defects	
	Humidity	Capacitance Change	Within ±15%	Let the capacitor sit at $40\pm2^{\circ}$ C and relative humidity of 90 to 95% for $500^{\pm2^{\circ}}_{0}$ hrs. Remove and let sit for 24 ± 2 hrs. at *room condition, then
17	(Steady	D.F.	0.05 max.	measure.
	State)	I.R.	More than 1,000M Ω	•Pretreatment Perform a heat treatment at 150 + 10 °C for 60±5 min, and then
		Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at *room condition.
		Appearance	No marking defects	Apply voltage and time as Table at 85±2°C. Remove and let sit
		Capacitance Change	Within ±20%	for 24 ±2 hrs. at *room condition, then measure. The charge / discharge current is less than 50mA.
	Life	D.F.	0.05 max.	Nominal Capacitance Test Time Test voltage C≥10,000pF 1,000 ^{±48} ₀ hrs. AC300V(r.m.s.)
18		I.R.	More than 1,000M Ω	C<10,000pF 1,500 ⁺⁴⁸ _o hrs. AC500V(r.m.s.)*
		Dielectric Strength	In accordance with item No.4	 * Except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. • Pretreatment Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at *room condition.
		Appearance	No marking defects	
		Capacitance Change	Within ±15%	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±2°d hrs. Remove and let sit for 24±2 hrs. at *room condition, then
19	Humidity Loading	D.F.	0.05 max.	measure.
	Louding	I.R.	More than 1,000M Ω	Pretreatment Apply test voltage for 60±5 min. at test temperature.
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

124

Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)


■ Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GC can be used as an X1-class and Y2-class capacitor, line-by-pass capacitor of UL1414.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

■ Applications

- 1. Ideal for use as Y capacitor or X capacitor for various switching power supplies
- 2. Ideal for modem applications

Part Number	Dimensions (mm)						
Part Number	L	W	T	e min.	g min.		
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0		

■ Standard Recognition

	Standard No.	Status of R	Recognition	Rated
	Standard NO.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		_	0	
VDE	EN132400	0	0	AC250V
SEV	EN132400	0	0	(r.m.s.)
SEMKO		0	0	
EN13240	0 Class	X2	X1, Y2	

*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GC101KY02L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC151KY02L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC221KY02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC331KY02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	5.7	5.0	2.0	4.0	0.3 min.

Safety Standard Recognized Type GD (IEC60384-14 Class Y3)

■ Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 2. The type GD can be used as a Y3-class capacitor.
- 3. Available for equipment based on IEC/EN60950 and UL1950.
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment

Part Number		Dir	imensions (mm)				
Part Number	L	W	T	e min.	g min.		
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.2*				
GA342Q	4.5 <u>1</u> 0.5	2.0 10.2	1.5 +0, -0.3	0.3	2.5		
GA343D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	0.3			
GA343Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3				

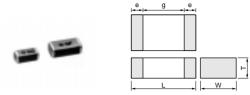
^{*} GA342D1X: 2.0±0.3

■ Standard Recognition

4.5×3.2mm and under

	Standard	Class	Status of Recognition Type GD		Rated
	No.				Voltage
SEMKO	EN132400	Y3	0		AC250V(r.m.s.)
Application	ns				
:			ching power supplies	n	Communication etwork devices uch as a modem

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGD100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GD101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD221KW01L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD331KW01L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA343QR7GD182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343QR7GD222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343DR7GD472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.


Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)

■ Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 2. The type GF can be used as a Y2-class capacitor.
- 3. Available for equipment based on IEC/EN60950 and UL1950. Besides, the GA352/355 types are available for equipment based on IEC/EN60065, UL1492, and UL6500.
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

■ Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment
- 3. Ideal for use as Y capacitor or X capacitor for various switching power supplies (GA352/355 types only)

Part Number	Dimensions (mm)							
Part Number	L	W	T	e min.	g min.			
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.2*		2.5			
GA342Q	4.5 ±0.5	2.0 ±0.2	1.5 +0, -0.3		2.5			
GA352Q		2.8 ±0.3	1.5 +0, -0.3	0.3				
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3		4.0			
GA355Q		3.0 <u>1</u> 0.4	1.5 +0, -0.3					

^{*} GA342D1X: 2.0±0.3

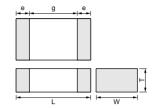
■ Standard Recognition

			Status of R	ecognition		
	Standard	Class	Туре	e GF	Rated	
	No.	Class	Size : 4.5×2.0mm	Size : 5.7×2.8mm and over	Voltage	
UL	UL1414	X1, Y2	_	0	AC250V	
SEMKO	EN132400	Y2	0	0	(r.m.s.)	

Applications		
Size	Switching power supplies	Communication network devices such as a modem
4.5×2.0mm	_	0
5.7×2.8mm and over	0	0

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGF100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GF101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GF151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342DR7GF221KW02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA342DR7GF331KW02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA352QR7GF471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA355QR7GF182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF332KW01L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355DR7GF472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	5.7	5.0	2.0	4.0	0.3 min.

Safety Standard Recognized Type GB (IEC60384-14 Class X2)


■ Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GB can be used as an X2-class capacitor.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

■ Applications

Ideal for use as X capacitor for various switching power supplies

Part Number	Dimensions (mm)					
Part Number	L W		T	e min.	g min.	
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0	
GA355X	3.7 ±0.4	3.0 <u>1</u> 0.4	2.7 ±0.3	0.3	4.0	

■ Standard Recognition

	Standard No.	Status of R	Recognition	Rated
	Standard NO.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		_	0	
VDE	EN132400	0	0	AC250V
SEV	EN132400	0	0	(r.m.s.)
SEMKO		0	0	
EN132400 Class		X2	X1, Y2	

*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GB103KY02L	AC250 (r.m.s.)	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB153KY02L	AC250 (r.m.s.)	X7R (EIA)	15000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB223KY02L	AC250 (r.m.s.)	X7R (EIA)	22000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355XR7GB333KY06L	AC250 (r.m.s.)	X7R (EIA)	33000 ±10%	5.7	5.0	2.7	4.0	0.3 min.

Ite	em	Specifications	Test Method		
Operating Temperatu	ure Range	−55 to +125°C	-		
Appearar	nce	No defects or abnormalities	Visual inspection		
Dimensio	ns	Within the specified dimensions	Using calipers		
Dielectric	: Strength	No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Test Voltage Type GB DC1075V Type GC/GD/GF AC1500V(r.m.s.)		
		No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage: 2.5kV zero to peak		
Insulation (I.R.)	Resistance	More than $6{,}000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.		
Capacita	nce	Within the specified tolerance	The capacitance/Q/D.F. should be measured at 20℃ at a		
	Dissipation Factor (D.F.) Char. Specification $ X7R D.F. \le 0.025 $ $ Q \ge 400 + 20C^{*2} (C \le 30pF) $		frequency of 1±0.2kHz (SL char.: 1±0.2MHz) and a voltage of AC1±0.2V(r.m.s.). •Pretreatment for X7R char. Perform a heat treatment at 150 [±] ₁ 8°C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.		
7 Temperature Characteristics		Char. Capacitance Change X7R Within ±15% Temperature characteristic guarantee is −55 to +125°C Char. Temperature Coefficient SL +350 to −1000ppm/°C Temperature characteristic guarantee is +20 to +85°C	The range of capacitance change compared with the 25°C (SL char. : 20°C) value within -55 to $+125$ °C should be within the specified range. •Pretreatment for X7R char. Perform a heat treatment at 150^{+}_{-1} °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *'room condition.		
	Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from		
	I.R.	More than 1,000M Ω	the capacitor (Cd) charged at DC voltage of specified.		
Discharge Test (Application: Type GC)	Dielectric Strength	In accordance with item No.4	R3 R1 Ct R2 R2		
			Ct : Capacitor under test $Cd: 0.001 \mu F$ R1 : 1,000 Ω R2 : 100M Ω R3 : Surge resistance		
1 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig. 1		
	Operating Temperature Appearary Dimension Dielectric Di	Temperature Range Appearance Dimensions Dielectric Strength Pulse Voltage (Application: Type GD/GF) Insulation Resistance (I.R.) Capacitance Dissipation Factor (D.F.) Q Capacitance Temperature Characteristics Appearance I.R. Discharge Test (Application: Type GC) Application: Type GC) Appearance Strength	Disciplation Factor (D.F.) Q Characteristics		

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page.

\overline{A}	Continued from the preceding page.							
No.	Ite	em	Specifications	Test Method				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).				
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The				
12	Vibration Resistance	D.F. Q	Char. Specification X7R D.F.≤0.025 SL Q≥400+20C*² (C<30pF)	frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applie for a period of 2 hrs. in each 3 mutually perpendicular direction (total of 6 hrs.). Cu Class Epoxy Board Cu Cu Cu Cu Cu Cu Cu C				
			No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
13	Deflection		LXW Dimension (mm)	Pressurizing speed 1.0mm/s Pressurize Capacitance meter 45 (in mm)				
			Fig. 2	Fig. 3				
14	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder				
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in solder				
15	Resistance to Soldering	Capacitance Change	Char. Capacitance Change X7R Within ±10% SL Within ±2.5% or ±0.25pF (Whichever is larger)	solution at 260±5°C for 10±1 sec. Let sit at *'room condition for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s •Pretreatment for X7R char. Perform a heat treatment at 150± ₁ 8°C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.				
	Heat	I.R.	More than 1,000M Ω	di Danka akia s				
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120℃ 1 min. 2 170 to 200℃ 1 min.				
*1 "[Poom cond	ition" Tomr	l perature : 15 to 35℃ Relative humidity : 45 to 75% Atmospheric	proceure : 86 to 106kPa				

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

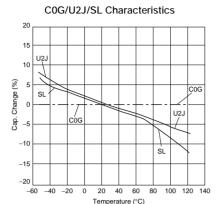
Continued from the preceding page.

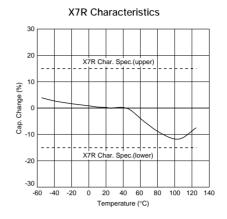
lo. It	em	Specifications	Test Method		
	Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±2.5% or ±0.25pF (Whichever is larger)	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at *'room condition, then measure. Step Temperature (°C) Time (min.)		
Temperature Cycle	D.F. Q	$\begin{tabular}{ c c c c c }\hline Char. & Specification \\\hline X7R & D.F. \le 0.05 \\\hline SL & Q \ge 400 + 20C^{*2} \ (C < 30pF) \\\hline Q \ge 1000 & (C \ge 30pF) \\\hline \\ More than 3,000MΩ\\\hline \end{tabular}$	1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 • Pretreatment for X7R char. Perform a heat treatment at 150±10° C for 60±5 min. and then		
	Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at *¹room condition.		
	Appearance	No marking defects			
	Capacitance Change	Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Before this test, the test shown in the following is performedItem 11 Adhesive Strength of Termination (apply force is 5N) -Item 13 Deflection		
7 (Steady State)	D.F. Q	Char. Specification X7R D.F.≤0.05 SL Q≥275+5/2C*² (C<30pF)	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±2% hrs. Remove and let sit for 24±2 hrs. at *1room condition, then measure. • Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then		
	I.R. Dielectric	More than 3,000MΩ	let sit for 24±2 hrs. at *'room condition.		
	Strength	In accordance with item No.4	Defending to the form of the following in the following i		
	Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±20% SL Within ±3.0% or ±0.3pF (Whichever is larger)	Before this test, the test shown in the following is performed. -Item 11 Adhesive Strength of Termination (apply force is 5N) -Item 13 Deflection Impulse Voltage Each individual capacitor should be subjected to a 2.5kV (Type		
8 Life	D.F. Q	Char. Specification X7R D.F.≤0.05 Q≥275+5/2C*² (C<30pF)	GC/GF: 5kV) Impulses (the voltage value means zero to peak) for three times. Then the capacitors are applied to life test. Apply voltage as Table for 1,000 hrs. at 125 + 2 °C, relative		
Liio	I.R.	More than $3{,}000M\Omega$	humidity 50% max.		
	Dielectric Strength	In accordance with item No.4	Type Applied Voltage GB AC312.5V(r.m.s.), except that once each hour the voltage is increased to AC1,000V(r.m.s.) for 0.1 sec. GC GD AC425V(r.m.s.), except that once each hour the voltage is increased to AC1,000V(r.m.s.) for 0.1 sec. Let sit for 24±2 hrs. at *'room condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.		

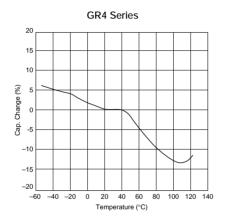
^{*1 &}quot;Room condition" Temperature : 15 to 35℃, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

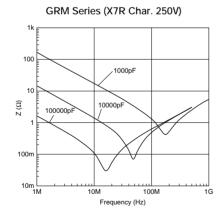
Continued from the preceding page

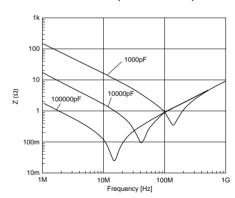

Continued from the pre			-: -	Took Maske al	
No.	Item		Specifications	Test Method	
	(Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Before this test, the test shown in the following is performed. Item 11 Adhesive Strength of Termination (apply force is 5N) Item 13 Deflection	
		D.F. Q	Char. Specification X7R D.F.≤0.05 SL Q≥275+5/2C*² (C<30pF)	Apply the rated voltage at $40\pm2^{\circ}\text{C}$ and relative humidity of 90 to 95% for $500\pm^{\circ}\text{d}$ hrs. Remove and let sit for 24 ± 2 hrs. at *¹room condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at $150\pm_{1}8^{\circ}\text{C}$ for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *¹room condition.	
	I	I.R.	More than 3,000M Ω	let sit for 24±2 hrs. at "room condition.	
		Dielectric Strength	In accordance with item No.4		
20 Active Flammability		ty	The cheese-cloth should not be on fire.	The capacitor should be individually wrapped in at least one but not more than two complete layers of cheese-cloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 min. after the last discharge. C1,2 : 1µF±10% C3 : 0.033µF±5% 10kV L1 to 4 : 1.5mH±20% 16A Rod core choke Ct : 3µF±5% 10kV R : 100Ω±2% Cx : Capacitor under test UAC : UR±5% F : Fuse, Rated 16A UR : Rated Voltage Ut : Voltage applied to Ct Ux Type Ui GB, GD 2.5kV GC, GF 5kV	
Passive Flammability		3		The capacitor under test should be held in the flame in the position which best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame 30 sec. Length of flame: 12±1mm Gas burner : Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas : Butane gas Purity 95% min. Test Specimen Tissue About 10mm Thick Board	


^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa


^{*2 &}quot;C" expresses nominal capacitance value (pF).

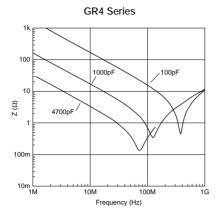
GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

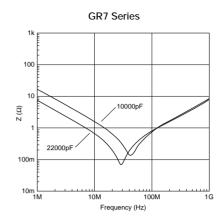

■ Capacitance-Temperature Characteristics

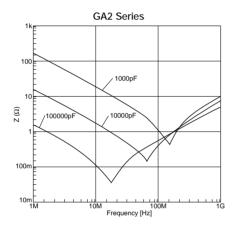


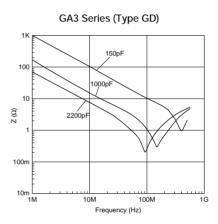
■ Impedance-Frequency Characteristics

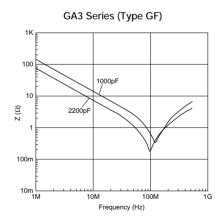
GRM Series (X7R Char. 630V)

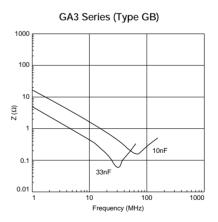


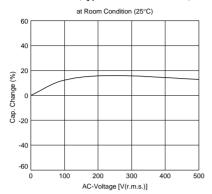


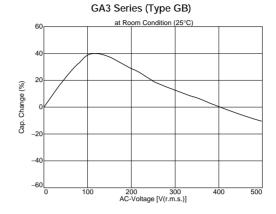

GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)


Continued from the preceding page.


■ Impedance-Frequency Characteristics







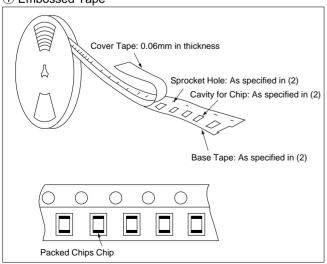
GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

■ Capacitance-AC Voltage Characteristics

GA3 Series (Type GD/GF, X7R char.)

Package

Taping is standard packaging method.

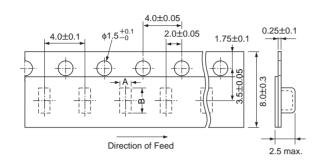

■ Minimum Quantity Guide

		Dimensions (mm)			Quantity (pcs.)		
Part Nu	mber		Dimensions (mn	1)	φ180mm reel		
		L	W	Т	Paper Tape	Embossed Tape	
	GRM18	1.6	0.8	0.8	4,000	-	
	001104	2.0	4.05	1.0	4,000	-	
	GRM21	2.0	1.25	1.25	-	3,000	
				1.0	4,000	-	
	GRM31/GR731	3.2	1.6	1.25	-	3,000	
				1.6	-	2,000	
				1.0	4,000	-	
	GRM32	2.2	2.5	1.25	-	3,000	
/ledium-voltage	GRW32	3.2		1.5	-	2,000	
				2.0	-	1,000	
	GRM42/GR442	4.5	2.0	1.0	-	3,000	
				1.5	-	2,000	
				2.0	-	2,000	
	GRM43/GR443	4.5	3.2	1.5	-	1,000	
				2.0	-	1,000	
				2.5	-	500	
	GRM55	5.7	5.0	2.0	-	1,000	
	GA242	4.5	2.0	1.5	-	2,000	
AC250V	CA242	4.5	3.2	1.5	-	1,000	
AC250V	GA243			2.0	-	1,000	
	GA255	5.7	5.0	2.0	-	1,000	
	GA342	4.5	2.0	1.5	-	2,000	
	GA342	4.5	2.0	2.0	-	2,000	
	GA343	4.5	2.2	1.5	-	1,000	
Safety Std.	GA343	4.5	3.2	2.0	-	1,000	
Recognition	GA352	5.7	2.8	1.5	-	1,000	
				1.5	-	1,000	
	GA355	5.7	5.0	2.0	-	1,000	
				2.7	-	500	

■ Tape Carrier Packaging

(1) Appearance of Taping

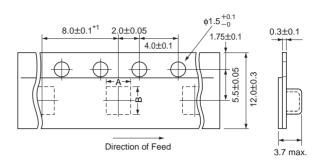
① Embossed Tape


Package

Continued from the preceding page.

(2) Dimensions of Tape

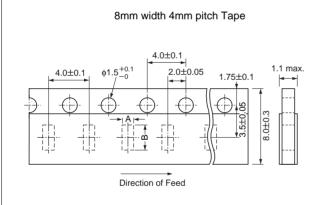
① Embossed Tape


8mm width 4mm pitch Tape

Part Number	A*	B*
GRM21 (T≧1.25mm)	1.45	2.25
GRM31/GR731 (T≥1.25mm)	2.0	3.6
GRM32 (T≧1.25mm)	2.9	3.6

*Nominal Value

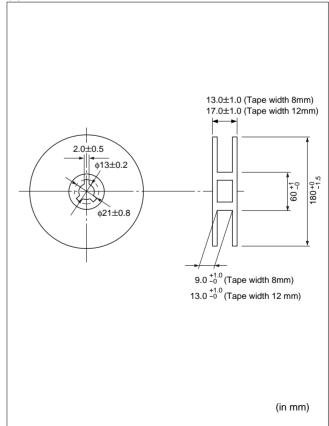
12mm width 8mm/4mm pitch Tape


Part Number	A*	B*
GRM42/GR442/GA242/GA342	2.5	5.1
GRM43/GR443/GA243/GA343	3.6	4.9
GA352	3.2	6.1
GRM55/GA255/GA355	5.4	6.1

^{*1 4.0±0.1}mm in case of GRM42/GR442/GA242/GA342

*Nominal Value

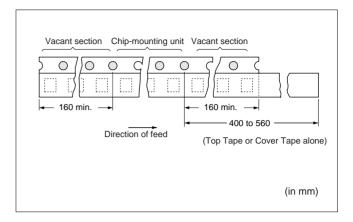
(in mm)

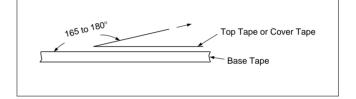

2 Paper Tape

Part Number	A*	B*
GRM18	1.05	1.85
GRM21 (T=1.0mm)	1.45	2.25
GRM31/GR731 (T=1.0mm)	2.0	3.6
GRM32 (T=1.0mm)	2.9	3.6

*Nominal value (in mm)

(3) Dimensions of Reel




Package

Continued from the preceding page.

(4) Taping Method

- ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2 Part of the leader and part of the empty tape shall be attached to the end of the tape as shown at right.
- 3 The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- 5 The top tape or cover tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocket holes.
- 6 Cumulative tolerance of sprocket holes, 10 pitches:
- 7 Peeling off force: 0.1 to 0.6N in the direction shown at right.

■ Storage and Operating Conditions

Operating and storage environment Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors

where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%. Use capacitors within 6 months. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

- 1. Vibration and impact Do not expose a capacitor to excessive shock or vibration during use.
- 2. Do not directly touch the chip capacitor, especially the ceramic body. Residue from hands/fingers may create a short circuit environment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

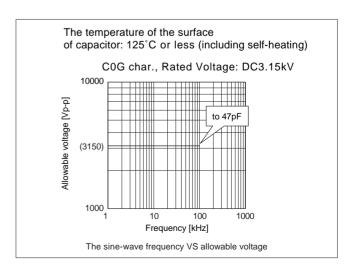
When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat

(1) In case of X7R char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as selfgenerated heat is within 20°C on the condition of atmosphere temperature 25°C. When measuring, use a thermocouple of small thermal capacity-K of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)


(2) In case of C0G char.

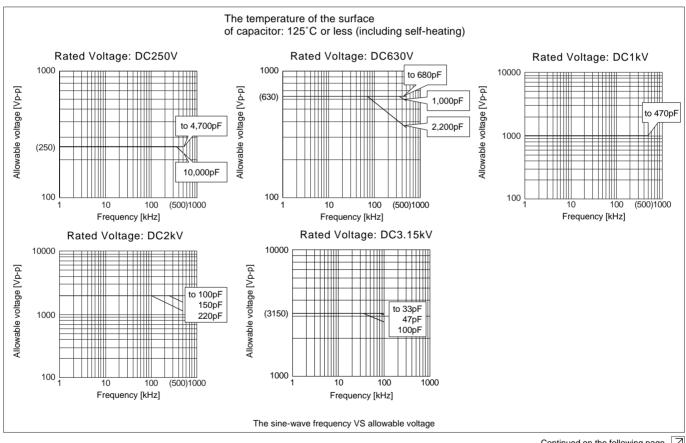
Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage should be less than the value shown in figure at right.

In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

Continued from the preceding page.


(3) In case of U2J char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz (less than 100kHz in case of rated voltage: DC3.15kV). The applied voltage should be less than the value shown in figure below.

In case of non-sine wave which includes a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

Continued from the preceding page.

(4) In case of GRM series SL char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz. The applied voltage should be less than the value shown in figure at right.

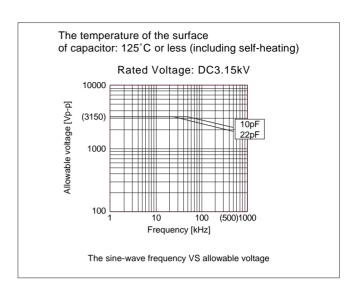
In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

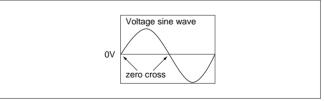
Otherwise, accurate measurement cannot be ensured.)

3. Test condition for AC withstanding Voltage

(1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave.

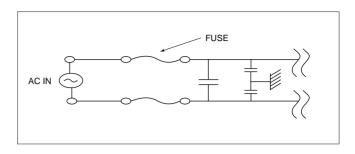

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.


(2) Voltage applied method

The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the figure at right -


Continued from the preceding page.

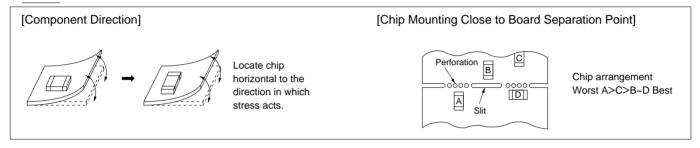
4. Fail-safe

Failure of a capacitor may result in a short circuit. Be sure to provide an appropriate fail-safe function such as a fuse on your product to help eliminate possible electric shock, fire, or fumes.

Please consider using fuses on each AC line if the capacitors are used between the AC input lines and earth (line bypass capacitors), to prepare for the worst case, such as a short circuit.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Caution (Soldering and Mounting)


1. Vibration and Impact

Do not expose a capacitor to excessive shock or vibration during use.

2. Circuit Board Material

In case that chip size is 4.5 × 3.2mm or more, a metalboard or metal-frame such as Aluminum board is not available because soldering heat causes expansion and shrinkage of a board or frame, which will cause a chip to crack.

3. Land Layout for Cropping PC Board Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

4. Soldering

If a chip component is heated or cooled abruptly during soldering, it may crack due to the thermal shock. To prevent this, follow our recommendations below for adequate soldering conditions. Carefully perform preheating so that temperature difference (ΔT) between the solder and component surface is in the following range. The smaller the temperatures difference (ΔT) between the solder and component surface is, the smaller the influence on the chip is. When components are immersed in solvent after mounting, please set the slow cooling process to keep the temperature difference within 100°C.

process to keep the temperature amerence within rec						
Chip Size Soldering Method	3.2×1.6mm and under	3.2×2.5mm and over				
Reflow Method or Soldering Iron Method	ΔT≦190°C	ΔT≦130°C				
Flow Method or Dip Soldering Method	ΔT≦150°C					

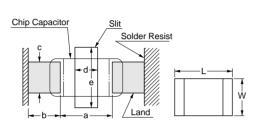
FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

5. Soldering Iron

When soldering chips with a soldering iron, it should be performed in following conditions.

And pre-heating shown in clause 4.

Item	Conditions		
Chip Size	≦2.0×1.25mm	≧3.2×1.6mm	
Temperature of Iron tip	300°C max.	270°C max.	
Soldering Iron Wattage	20W max.		
Diameter of Iron tip	φ 3.0mm max.		
Soldering Time	3 sec. max.		
Caution	Do not allow the iron tip to directly touch the ceramic element.		



■ Notice (Soldering and Mounting)

1. Construction of Board Pattern

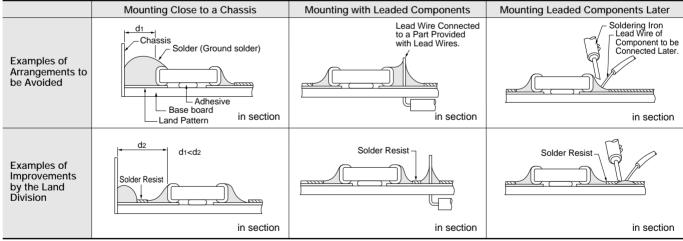
After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Construction and Dimensions of Pattern (Example)

Preparing slit helps flux cleaning and resin coating on the back of the capacitor.

Flow Soldering

L×W	а	b	С
1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4


Flow soldering: 3.2×1.6 or less available.

Reflow Soldering

L×W	a	b	С	d	е
1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	-	-
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	-	-
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	1.0-2.0	3.2-3.7
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	1.0-2.0	4.1-4.6
4.5×2.0	2.8-3.4	1.2-1.4	1.4-1.8	1.0-2.8	3.6-4.1
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0	1.0-2.8	4.8-5.3
5.7×2.8	4.0-4.6	1.4-1.6	2.1-2.6	1.0-4.0	4.4-4.9
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	1.0-4.0	6.6-7.1

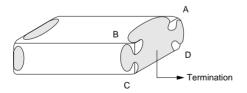
(in mm)

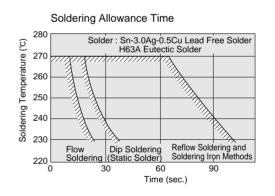
Land Layout to Prevent Excessive Solder

Notice

Continued from the preceding page.

- 2. Mounting of Chips
- Thickness of adhesives applied Keep thickness of adhesives applied (50-105µm or more) to reinforce the adhesive contact considering the thickness of the termination or capacitor (20-70µm) and the land pattern (30-35µm).
- Mechanical shock of the chip placer When the positioning claws and pick-up nozzle are worn, the load is applied to the chip while positioning is concentrated in one position, thus causing cracks, breakage, faulty positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble. An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.


3. Soldering


(1) Limit of losing effective area of the terminations and conditions needed for soldering.

> Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain at a maximum of 25% on all edge length A-B-C-D-A of part with A, B, C, D, shown in the Figure below.

In case of repeated soldering, the accumulated soldering time must be within the range shown at right.

(2) Flux

 Please use it after confirming there is no problem in the reliability of the product beforehand with a intended equipment. The residue of flux might cause the decrease in nonconductivity and the corrosion of an external electrode, etc.

(3) Solder Amount

1 Flow soldering and iron soldering Use as little solder as possible, and confirm that the solder is securely placed.

Notice

Continued from the preceding page.

2 Reflow soldering

When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations.

4. Cleaning

Please confirm there is no problem in the reliability of the product beforehand when cleaning it with a intended equipment.

The residue after it cleaning it might cause the decrease in the surface resistance of the chip and the corrosion of the electrode part, etc. As a result might cause reliability to deteriorate. Please confirm there is no problem with a intended equipment in the ultrasonic cleansing beforehand

5. Resin Coating

Please use it after confirming there is no influence on the product with a intended equipment beforehand when the resin coating and molding.

The chip crack might be caused at the cool and heat cycle by bias of the amount of spreading of the resin and spreading thickness.

The resin for the coating and molding must use the thing that as the stress when stiffening is small, and the hygroscopic is as low as possible.

■ Rating

1. Capacitance change of capacitor

(1) In case of X7R char.

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit. Please contact us if you need detailed information.

(2) In case of any char. except X7R Capacitance might change a little depending on the surrounding temperature or an applied voltage. Please contact us if you intend to use this product in a strict time constant circuit.

2. Performance check by equipment

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 (X7R char.) ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

ISO 9001 Certifications

■ Qualified Standards

The products listed here have been produced by ISO 9001 certified factory.

Fukui Murata Mfg. Co., Ltd.
Izumo Murata Mfg. Co., Ltd.
Okayama Murata Mfg. Co., Ltd.
Murata Electronics Singapore (Pte.) Ltd.
Murata Amazonia Industria E Comercio Ltda.
Suzhou Murata Electronics Co., Ltd.
Beijing Murata Electronics Co., Ltd.

C02E.pdf

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

05.12.14

⚠ Note:

1. Export Control

(For customers outside Japan)

No muRata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction (nuclear, chemical or biological weapons or missiles) or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment 2 Aerospace equipment
 - 3 Undersea equipment 4 Power plant equipment
 - (5) Medical equipment 6 Transportation equipment (vehicles, trains, ships, etc.)
 - (8) Disaster prevention / crime prevention equipment 7 Traffic signal equipment
 - ① Application of similar complexity and/or reliability requirements to the applications listed above 9 Data-processing equipment
- 3. Product specifications in this catalog are as of July 2005. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers
- 4. Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/